Differentiated FPGAs Provide Security in Today’s Hyperconnected World

We live in a hyperconnected world that is constantly redefining how people communicate, congregate, collaborate and share information globally and instantaneously. As ground-breaking innovation drives new paradigms in hyperconnectivity, many new business opportunities are created that offer enormous growth potential but are also accompanied by difficult technological and infrastructure challenges that require innovative solutions. These challenges range from protecting intellectual property (IP), ensuring security and combatting cybercrime to complying with eco-friendly standards and delivering higher system reliability.
"FPGAs…offer the fastest way to integrate a specific design into a single device."
Technology companies developing products for the hyperconnected world typically rely on application-specific standard products (ASSPs), application-specific integrated circuits (ASICs), or field-programmable gate arrays (FPGAs) to incorporate required functionalities into one or more highly-integrated devices. ASSPs are difficult to find in off-the-shelf solutions that encompass all required functions, and ASICs suffer from high cost and long design cycle times, especially as the industry moves toward smaller geometries.
FPGAs, on the other hand, offer the fastest way to integrate a specific design into a single device. They have come a long way in the past two decades with regard to integration capabilities, size and built-in functions such as complex I/Os, memories, CPUs and DSPs. The cost of FPGAs is traditionally higher than ASSPs or traditional ASICs, but they provide huge advantages for supporting and facilitating system field upgradability, design flexibility and faster time-to-market. Today’s FPGAs provide an outstanding solution for system architects, and promise to offer a significantly better overall total cost of ownership (TCO) as compared to ASICs in many next-generation designs. Current solutions from the major FPGA suppliers boast excellent innovation, and include advanced built-in functions such as math blocks, high speed serial interfaces, embedded memories and various CPU/DSP cores once only available in ASIC-based component designs.
The latest FPGAs also are unique in their ability to provide built-in features and differentiated capabilities for today’s hyperconnected systems in communications, industrial, aerospace and defense applications. These system designs need improved security, low overall power consumption, high levels of reliability and application-specific system integration targeted to the end user. Each of these elements is critical for next-generation hyperconnected system designs and can be delivered with FPGAs that incorporate them all into a single, highly integrated device:



An example of the latest FPGAs designed and differentiated specifically for hyperconnected system applications is Microsemi’s SmartFusion2® System on Chip (SoC) FPGA, which addresses the full range of security, low power, reliability and system-level integration requirements in a single device.
With the industry’s most complete set of design and data security features, SmartFusion2 SoC FPGAs are designed to serve as a robust root-of-trust device with secure key storage capability, and include a variety of other important features that protect today’s hyperconnected systems from cloning, tampering or other malicious attacks.

