

Multi-Host Sharing of NVMe Drives and GPUs Using PCIe Fabrics

Abstract

This white paper discusses how PCIe fabrics can be used to create a flexible, low-latency, high-performance fabric interconnect to a shared pool of GPUs and NVMe SSDs while still supporting standard host operating system drivers. Using dynamic partitioning and multi-host single root I/O virtualization (SR-IOV) sharing techniques, GPU and NVMe resources can be "composed" or dynamically allocated to a specific host or set of hosts, allowing real-time allocation of resources to match workload requirements. Key concepts of PCIe fabrics and multi-host sharing of SR-IOV devices are also discussed.

Table of Contents

Abstract1								
1.	Introd	uction						
2.	PCle	Hierarchy Restriction4						
3.	PCle	Single Root Hierarchy Domain Restriction6						
4.	PCle	Fabrics for Scaling						
5.	PCle	Fabrics for Multi-Host Sharing9						
6.	Demo	nstration10						
7.	Concl	usion14						
8.	Revisi	on History15						
	8.1.	Revision 3.0						
	8.2.	Revision 2.0						
	8.3.	Revision 1.0						
The	Micro	hip Website						
Pro	duct Cl	nange Notification Service16						
Cus	tomer	Support						
Mic	Microchip Devices Code Protection Feature							
Legal Notice								
Trademarks								
Qua	Quality Management System							
Woi	Worldwide Sales and Service19							

1. Introduction

As the use of GPUs for deep learning, artificial intelligence and machine learning increases, so does the demand for a more efficient deployment of GPU and NVMe resources. To effectively integrate these costly devices into systems, datacenter equipment designers require innovative technologies for efficiently sharing system resources among multiple hosts with a high-bandwidth, low-latency interconnection in disaggregated, composable architectures. PCIe is an effective, high-performance, and ubiquitous system interconnect, but there are limitations in the specification that limit its usage in such designs. This white paper discusses how PCIe fabrics are able to overcome the limitations of conventional PCIe tree-based systems to provide flexible, dynamic composition and sharing of system resources.

2. PCIe Hierarchy Restriction

The PCIe standard defines a hierarchy domain as a rigid, hierarchical tree structure, which complicates the design of large scale systems involving multiple PCIe switches and host systems. For example, consider a system with three hosts and three switches, as shown in the following figure.

To maintain a PCIe-specification compliant hierarchy, Host 1 must have a dedicated downstream port (DSP) in Switch 1 connected to a dedicated upstream port (USP) in Switch 2, and a dedicated DSP in Switch 2 connected to a dedicated USP in Switch 3. Similar requirements exist for Host 2 and Host 3, as shown in the following figure.

As a result, a simple, PCIe tree structure-based system requires three links between each switch dedicated to each host's PCIe topology. The inability to share these links between the hosts complicates the design and decreases system efficiency.

Figure 2-3. PCIe Link Required for Each Host

3. PCIe Single Root Hierarchy Domain Restriction

A typical PCIe specification-compliant hierarchy domain only contains one root port. Standards have been defined for extending a hierarchy domain to support multiple roots (Multi-Root I/O Virtualization and Sharing Specification Revision 1.0), but this is a complicated capability that has not been implemented by a major, modern host CPU. The result is that unused PCIe devices are stranded in the hierarchy domain of the host that owns them. An example of such a scenario is shown in the following figure.

Host 1 has fully consumed its compute resources, but Hosts 2 and 3 are underutilizing theirs. It is impossible for Host 1 to access the unused compute resources because they are outside of its hierarchy domain. Device sharing can be implemented using non-transparent bridging (NTB), but that requires the implementation of complicated, non-standard drivers and software to be developed for each type of shared PCIe device.

4. PCIe Fabrics for Scaling

A PCIe fabric can be used to address issues with scaling a standard PCIe topology to multiple hosts and multiple switches. A PCIe fabric-based system implemented using Microchip's SwitchtecTM technology PAX Advanced Fabric PCIe Switch is separated into two types of domains: a fabric domain containing all EPs and fabric links, and host domains for each connected host. Transactions from the host domains are translated to IDs and addresses in the fabric domain, and vice versa. Proprietary, non-hierarchical routing is used for traffic in the fabric domain. This allows the fabric links connecting the switches to be efficiently shared by all hosts in the system.

Firmware running on an embedded processor in the fabric PCIe switch intercepts all configuration plane traffic from the host, including the PCIe enumeration process. It virtualizes a simple, PCIe specification-compliant switch with a configurable number of DSPs.

Figure 4-2. PCIe Switch Virtualization

PCIe devices assigned to the host domain appear directly connected to the virtual PCIe switch. All control plane traffic will be routed to the switch firmware for processing, but data plane traffic will be routed directly to the PCIe EPs to ensure maximum system performance.

Figure 4-3. Traffic Routing in a PAX PCIe Fabric

Unused devices in other host domains are no longer stranded and can be dynamically assigned based on each host's resource requirements. Peer-to-peer traffic is supported within the fabric to enable modern AI/ML applications. These system capabilities are presented to hosts in a PCIe specification-compliant manner, so standard drivers can be used.

5. PCIe Fabrics for Multi-Host Sharing

Within the PCIe fabric, devices are assigned to hosts at a PCIe function-level granularity. As a result, multi-function devices can have individual functions assigned to different hosts, allowing for multi-host sharing. This capability can be used for devices with multiple functions and those that implement SR-IOV, a PCIe capability that allows a device to present multiple physical and Virtual Functions (VFs). Switch firmware can also be used to virtualize the configuration space of the VFs to alter their contents and capabilities. For example, the VFs of an SR-IOV capable NVM device can be modified to present the VF as a standard, single function NVM device. This allows devices to be shared among hosts using standard, in-box drivers.

Not all multi-function and SR-IOV capable devices are designed to support this model for multi-host sharing. Each PCIe function must be designed to support standalone operation with minimal requirements for coordinating with other functions. PAX evaluation platforms are available to test EP compatibility with multi-host sharing across a fabric.

6. Demonstration

Microchip has successfully proven the concepts presented in this paper with a real-world example. We have implemented a proof-of-concept system that demonstrates dynamic assignment of GPUs and multi-host sharing of SR-IOV SSDs. The hosts tested are running Windows Server 2016 and Ubuntu Server 16.04 LTS, neither of which require any custom drivers or software to facilitate the multi-host sharing. The hosts run traffic representative of actual AI/ML workloads, including Nvidia's CUDA peer-to-peer traffic benchmarking utility, p2pBandwidthLatencyTest, and training the cifar10 image classification Tensorflow model.

The demo system comprises of four PAX fabric PCIe switches, four Nvidia Tesla GPGPUs, one Samsung PM1725a NVM device with SR-IOV support, and two Supermicro servers interconnected as illustrated below. The embedded switch firmware handles the low-level configuration and management of the switch hardware, so the demo system is managed from Microchip's debug and diagnostics utility, ChipLink, connected over a simple UART management interface.

Figure 6-1. Demo System Block Diagram

Initially, all GPUs are assigned to Host 1, which is running Windows Server 2016, to increase the performance of the AI training. The virtual switch presented to the host can be seen in the Windows Device Manager tool. All GPUs appear as though they are directly connected to the virtual switch; the fabric links and complexities of the physical topology are obscured from the host.

The p2pBandwidthLatencyTest utility is used to measure the bandwidth of GPU-to-GPU transfers across the PCIe fabric.

Figure 6-3. p2pBandwidthLatencyTest Performance Excerpt from Host 1

P2P	Con	nectivit	y Matri	x			
	D\	D 0	1	2	3		
	0	1	1	1	1		
	1	1	1	1	1		
	2	1	1	1	1		
	3	1	1	1	1		
Uni	dire	ectional	P2P=Er	nabled B	Bandwidth	Matrix	(GB/s)
	D/D	0	1	2	3		
	0	210.61	12.96	12.54	12.53		
	1	12.52	211.35	13.08	13.06		
	2	12.52	12.52	212.61	13.05		
	3	13.06	13.06	12.54	211.36		
	<						
Bid	ire	tional	P2P=En	abled B	andwidth	Matrix	(GB/s)
		0	1	2	3		(00/0)
	a	213 51	24 81	24 77	24 72		
	1	24 72	212 55	24.77	25 74		
	1 2	24.75	213.55	24.75	23.74		
	2	24.53	24.5/	214.73	24.80		
	3	24.83	25.72	24.73	214.58		

With the GPUs discovered and the standard Nvidia drivers loaded, an AI workload is started. In this example, the user is training the cifar10 image classification algorithm. The training algorithm will be distributed across all four GPUs.

Figure 6-4. cifar10 Multi-GPU Training Output Excerpt

Administrator: Command Prompt - python_cifar10_multi_gpu_train.py	-		×
2018-04-06 18:37:52.698874: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\comm u\gpu_device.cc:1030] Found device 3 with properties: name: Tesla M40 2468 major: 5 minor: 2 memoryClockBate(GHz): 1 112	ion_	runtin	ie\gp ^
ncitus 10 0000 07:00.0			
totalMemory: 22.43GiB freeMemory: 22.18GiB			
2018-04-06 18:37:52.701446: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\comm u\gpu device.cc:1045] Device peer to peer matrix	ion_	runtin	ie\gp
2018-04-06 18:37:52.702693: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\comm u\gpu device.cc:1051] DMA: 0 1 2 3	ion_	runtin	ie\gp
2018-04-06 18:37:52.703145: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\comm u\gpu device.cc:1061] 0: Y Y Y Y	ion_	runtin	ie\gp
2018-04-06 18:37:52.704059: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\comm u\gpu_device.cc:1061] 1: Y Y Y Y	ion_	runtin	ie\gp
2018-04-06 18:37:52.704960: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\comm u\gpu_device.cc:1061] 2: Y Y Y Y	ion_	runtin	ie\gp
2018-04-06 18:37:52.705856: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\comm u\gpu device.cc:1061] 3: YYYY	ion_	runtin	ie\gp
2018-04-06 18:37:52.706817: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\comm u\gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: Tesla M40, pci bus ic 0, compute capability: 5.2)	ion_ 1: 0	runtin 000:04	e\gp :00.
2018-04-06 18:37:52.707744: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\comm u\gpu_device.cc:1120] Creating TensorFlow device (/device:6PU:1) -> (device: 1, name: Tesla M40, pci bus ic 0, compute capability: 5.2)	ion_ 1: 0	runtin 000:05	e\gp :00.
2018-04-06 18:37:52.708655: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\commu u\gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:2) -> (device: 2, name: Tesla M40 24GB, pci b 5:00.0. compute capability: 5.2)	on_ ous	runtin id: 00	le\gp 100:0
2018-04-06 18:37:52.709626: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\comm u\gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:3) -> (device: 3, name: Tesla M40 24GB, pci b 7:00.0, compute capability: 5.2)	ion_ ous	runtin id: 00	ie\gp 100:0

When the workload completes, the user can release two of the GPUs back into the fabric pool. Now, we'll assign one of the SR-IOV drive's VFs to each host. On Host 1, the drive appears as a "Standard NVM Express Controller" using the standard, in-box Windows driver for NVM devices.

Figure 6-5. SR-IOV NVM VF Virtualized as Standard NVM Controller

Figure 6-6. SR-IOV NVM VF Partition

File Home Share	View Manage SR-IOV NVM (D:)		
 ← → · · ↑ → Thi ✓ Quick access Desktop // ✓ Downloads // ✓ Documents // ✓ Pictures // ✓ This PC ✓ Desktop ✓ Documents 	is PC > SR-IOV NVM (D:) > Name New folder Bibcudnn7_7.1.1.5-1+ cuda9.1_amd64.deb Bibcudnn7-dev_7.1.1.5-1+ cuda9.1_amd64 Bibcudnn7-doc_7.1.1.5-1+ cuda9.1_amd64 Test.txt	Date modified 3/21/2018 11:38 PM 3/14/2018 8:51 PM 3/14/2018 9:10 PM 3/14/2018 9:11 PM 3/20/2018 7:54 PM	Type File folder DEB File DEB File Text Document

Host 2 is running Ubuntu Server 16.04 LTS, and its PCIe topology is also a simple switch with locally attached GPUs and a standard NVM device.

Figure 6-7.	Virtual	Switch	Topology	in	I inux
riguie 0-7.	Viituai	Owner	ropology		LIIIUA

00.0-[03-07]+-00.0-[04]00.0	NVIDIA Corporation GM200GL [Tesla M40]
+-01.0-[05]00.0	NVIDIA Corporation GM200GL [Tesla M40]
+-02.0-[06]00.0	Samsung Electronics Co Ltd Device a822
N-03.0-[07]	

The p2pBandwidthLatencyTest utility produces similar performance results on Host 2.

Figure 6-8. p2pBandwidthLatencyTest Performance Excerpt from Host 2

PZP	Connectivity		vity M	latrix			
	D	ND	0	1			
	0		1	1			
	. 1		1	1			
Unid	dire	ectional	P2P=	Enabled	Bandwidth	Matrix	(GB/s)
1	DND	Θ	1				
	0	214.21	12.2	7			
	1	13.06	212.9	9			
Bid	ire	ctional	P2P=F	Enabled	Bandwidth	Matrix	(GB/s)
1	DND	Θ	1	L			
	0	214.53	24.3	33			
	1	24.83	215.5	55			

The NVM VF is presented to Host 2 as a standard NVM device, so its standard, in-box drivers can be used.

Figure 6-9. SR-IOV NVM VF in Device Listing and Mounted Volume Contents

ubuntu@bbyapps-ubuntu1604	-se:"\$ is /	dev							
autofs	hidrawl	100p3	nvne0n1p2	sg0	tty2	tty4	t ty6	ttyS20	userio
htgapps-ahaita1604-se wa	hidrawZ	10004	port	sg1	tty20	tty40	tty60	ttyS21	VCS
block	hidraw3	100p5	ppp	sgZ	ttg21	tty41	tty61	ttyS22	vcs1
bag.	hpet	Loop6	psaux	sheet	tty22	t ty42	t ty6Z	ttyS23	vcsZ
btrfs-control		100p7	ptmx	snapshot	tty23	tty43	tty63	ttyS24	vcs3
MUS.	hurng	loop-control	ptp0		tty24	tty44	tty7	ttuS25	vcs4
char	iZc-0		ptp1	stderr	tty25	tty45	tty8	ttyS26	vcs5
console	i2c-1	ncelog		stdin	tty26	tty46	tty9	ttySZ7	vcs6
core	12c-2	nen	random	stdout	ttg27	tty47	ttyprintk	ttyS28	VCSA
Cpu.	12c-3	nenory_bandwidth	rfkill	tty	ttg28	tty48	ttyS0	ttyS29	ucsa1
cpu_dma_latency	iZc-4	mpacac	rtc	tty8	tty29	t ty 19	ttgS1	ttyS3	VICSAZ
cuse	i2c-5	net.	rtc0	ttyl	tty3	ttu5	ttuS10	ttuS30	vcsa3
d Esk -	i2c-6	network_latency	sda	tty10	tty30	tty50	ttgS11	ttyS31	vcsa4
dm-0	initctl	network_throughput	sda1	tty11	tty31	tty51	ttgS12	ttuS4	vcsa5
dn-1		null	Seba	ttg12	tty32	tty52	ttgS13	ttuS5	vesab
de t	knsg	nvidia0	sda5	tty13	tty33	tty53	ttyS14	ttyS6	
ecryptfs	kun	nvidia1	sdb	tty14	tty34	tty54	ttyS15	ttuS7	uga_arbiter
£P0		nvidiact1	sdb1	tty15	tty35	tty55	ttyS16	ttyS8	vhc i
£ d	log	nvidia-uvn	sdb2	tty16	tty36	t ty56	ttyS17	ttyS9	whost-net
full	loop0	nunc0	sdb3	tty17	tty37	tty57	ttyS18	uhid	zero
fuse	loop1	nune0n1	sdc	tty18	tty38	tty58	ttyS19	uinput	
hidraw0	loop2	nune0n1p1	sdc1	tty19	tty39	tty59	ttyS2	urandom	
ubuntu@bbyapps-ubuntu1604	-se:"\$ sude	nount /dev/nume0n1p	2 /mat						
ubuntu@bbyapps-ubuntu1604	-se:"\$ 1s /	mnt							
libcudnn7_7.1.1.5-1+cuda9	.1_and64.de	b libcudnn?-doc	7.1.1.5-1+	cuda9.1_an	d64.deb				Test.txt
libcudan7-dev_7.1.1.5-1+c	uda9.1_andf	4 deb New Tolder							
ubuntu@bbyapps-ubuntu1604	-se:"\$_								

As demonstrated above, the virtual PCIe switch and all dynamic assignment operations are presented to the host as fully PCIe specification-compliant, enabling the hosts to use standard, in-box drivers. The embedded switch firmware provides a simple management interface so the PCIe fabric can be configured and managed by a light-weight external processor. Device peer-to-peer transactions are enabled by default and require no additional configuration or management from an external fabric manager.

7. Conclusion

PCIe fabrics provide the high-bandwidth, low-latency interconnections required to implement the next generation of disaggregated, composable architectures. System designers can provision or share system resources in scalable, efficient ways using standard in-box drivers.

Microchip's Switchtec technology PAX Advanced Fabric PCIe switches enable new architectures for next-generation solutions. They provide a scalable, low-latency, high-bandwidth, and cost-effective option for system design. With its virtualization of switch topologies and multi-host sharing of PCIe devices using standard, in-box drivers, PAX significantly reduces time to market and storage costs and simplifies system development. For more information, visit Switchtec PAX Advanced Fabric PCIe Switches or email: ClientEngagementStaff@microchip.com.

8. Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

8.1 Revision 3.0

Revision 3.0 was published in October 2020. The template was updated to the Microchip style, and it was assigned literature number DS00003702A.

8.2 Revision 2.0

Revision 2.0 was published in October 2019. It is the first publication of this document.

8.3 Revision 1.0

Revision 1.0 was an internal publication.

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- · Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- · Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
 protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly
 evolving. We at Microchip are committed to continuously improving the code protection features of our products.
 Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act.
 If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
 for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

[©] 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6960-5

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chenɑdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongging	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca. IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenvang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi. MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville. IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380			Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			1 dx. ++-110-02 1-0020
Fax: 905-695-2078			
1 a. 000-000-2010			