

T51 AEC-Q200 Qualified vPolyTan[™] Polymer SMD Capacitors Combine Low ESR Down to 40 mΩ With High Volumetric Efficiency and High Temperature Operation

ADVANTAGE

Delivers improved performance in high temperature, high humidity operating conditions, the AEC-Q200 qualified T51 series offers lower ESR, lower voltage, and a a benign failure mode.

KEY PRODUCT FEATURES

- ✓ AEC-Q200 qualified polymer tantalum capacitors
- High volumetric efficiency able to offer more capacitance than available in other technologies
- ✓ Low ESR more highly conductive polymer cathode system provides lower ESR than traditional tantalum capacitors

RESOURCES

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u> © 2023 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED. WWW.VISHAY.COM

SS31171989-2302 1/2

MARKETS AND APPLICATIONS

- ADAS and Infotainment
- Body Electronics
 - Light and rain sensors
 - Communication bus
 - Car alarms
 - Windshield wipers
 - Small motor drives
 - Tire Pressure sensors
- In-Vehicle Systems
 - USB type C chargers
 - Seat controls
 - Window and mirror controls
- Panoramic roof systems
- Cruise control

ADDITIONAL BENEFITS

The introduction of T51 brings to market a highly robust polymer solution which offers an improvement over standard polymer tantalum in biased humidity and temperature cycling performance.

SPECIFICATIONS:

- Specific temperature operation: -55 °C to +125 °C
- Capacitance range: 6.8 μF to 330 μF
- Voltage ratings: 2.5 V_{DC} to 35 V_{DC}
- Case sizes: V 7343-20
 - D 7343-31

RATINGS AND CASE CODES								
μD	2.5 V	4.0 V	6.3 V	10 V	16 V	20 V	25 V	35 V
6.8								D
10							D	D
15							D	
22							D	
33					D	D	D	
47					D			
68					D			
100				D	D			
150		D ⁽¹⁾	D ⁽¹⁾	D ⁽¹⁾				
220	V	D ⁽¹⁾	D (1)	D (1)				
330	V	D ⁽¹⁾	D (1)					

Note

⁽¹⁾ Rating in development, contact factory for availability

LOWER VOLTAGE DERATING

In addition to a significantly lower ESR, the conductive polymer cathode features a benign failure mode, therefore additional derating is not required for the safety concerns associated with traditional MnO_2 technology.

In the illustration, we see that for a rated voltage (V_R) of 10 V or less, only 10 % derating is required, while for $V_R > 10$ V, 20 % derating is suggested (90 % and 80 % of application voltage respectively). These guidelines are consistent up to 105 °C. After 105 °C, we see a linear decline of the recommended derating to 40 % of V_R for < 10 V at 125 °C. Likewise, capacitors with a $V_R > 10$ V see a decrease to a recommended derating of 46 %.

Looking for a better alternative to MLCCs in automotive power supplies, ADAS, infotainment, and other in-vehicle electronic systems?

Please contact us, if you would like to purchase the T51 or order samples.