ARM DS-5 Tools and Avnet ZED Series

#8

Advanced Linux Application Debug using DS-5 and
Avnet ZedBoard or MicroZed

ON-RAMP

TECHNICAL

SESSIONS

September 2013
Version 01

—E;_—AvNET» Copyright © 2013 Avnet Inc. All rights reserved

Table of Contents

ARM DS-5 Tools and ZedBoard SEriescouueiiiiieriiiieniie ettt 3
ReqUIred INSTAllatioNnscoocciiiiiiiei e e e et e e e e e e e e eabrraeeeeeeeas 4
TEChNICAl SUPPOIT ...t e s s e e e e saba e e e s sabaeeeessraeeeas 5
Debugging @ LINUX APPHCAtION.....vuviiiiiitiiieee et e e rereee e 6
2 ToTo) fh d o[- =T == AU UOPPPRROTPPPN 7
Configure a Remote System Explorer (RSE) CONNECtionc.cevcveeveiieeiiieeniiieesiee e 8
SEArt the XmMING X-S@IVET ...uuiiiiii e e e e e e e e aarreeeaaaeas 11
Create Gnometris Debug Configurationeeeeiii i 12
Gnometris Debugging in Detail With DS-5ccvvveiiiiiiiiiiieieecc e 16
SOIULION Lttt e sar e e sne e s n e e e e nneenee 23
REVISION HISTOIY .ttt ettt et et et e e et e e et e e e e e es et eaeaeeeaaaaaaaaaaaaaeens 23
RESOUICES ..ottt 23
___H?__%_——__:_——_AVNET” ARM DS-5 Tools and Avnet ZED Series : 2

ARM DS-5 Tools and ZedBoard Series

This tutorial is one in a series of step by step instruction manuals. Together they document the
procedures necessary to utilize the ARM Development Studio 5 (DS-5"") Software Suite and the
DSTREAM Debugging tools with the Avnet Zynq Evaluation and Development (ZED) boards.
These tutorials can be used on their own, or in combination with Avnet online videos and
OnRamp Technical Session™.

The ARM software and hardware tools provide a powerful debugging suite for processor-based
systems built around the dual Cortex-A9 cores present in the Xilinx Zynq SoC, at the heart of the
Avnet ZED boards. A Linux software developer can simultaneously debug applications and
kernel module code, with separate control over each thread. You can step through Linux boot
code, first stage bare metal boot code, and bare metal applications. When used in concert
with the Xilinx Vivado tools for FPGA fabric development, the ARM debugger and Internal Logic
Analyzer (ILA) IP can be cross-triggered to stop on software and hardware breakpoints, or when
a hardware event occurs. For difficult-to-isolate intermittent faults, DS-5 provides access to the
Cortex-A9 on-chip Trace facility. Once your embedded system is running correctly, DS-5 uses
Streamline, a graphical system profiler, to identify performance bottlenecks in your design to
ensure top-shelf operation.

This tutorial series begins with the most basic tool configuration and board connection. It takes
you all the way through to the most complex aspects of hardware/software co-debugging to
root out design errors that are otherwise apparent only in very complex use cases, or worse,
after a product is released. Together the ARM DS-5 tools, Xilinx Vivado and Avnet ZED boards
provide an unparalleled combination to compress design timelines, cut project costs and
optimize your product for the marketplace.

=AVNET” ARM DS-5 Tools and Avnet ZED Series : 3

|

Required Installations

Software

The recommended software for this tutorial series is:

e ARM Development Studio 5 (Exact version used is 5.14, build 1702)

e Xilinx ISE WebPACK 14.5 (Free license and download from Xilinx website)

e Cypress CY7C64225 USB-to-UART Bridge Driver (for ZedBoard serial output)
e Silicon Labs CP2104 USB-to-UART Bridge Driver (for MicroZed serial output)
e Tera Term (Exact version used is V4.75)

e Xilinx Software Development Kit, version 14.5

e For hardware/software co-debugging, Xilinx Vivado 2013.2

Hardware

The targeted hardware consists of the following:

e PC workstation with at least 5 GB RAM, 30GB free hard disk space, Windows 7 64-bit
operating system, and a wired GB Ethernet connection

e Available SD card slot on PC or external USB-based SD card reader

e One of:

0 Avnet ZedBoard Kit (AES-Z7EV-7Z2020-G)
= USB cable (Type A to Micro-USB Type B)
= 4GB SD card
= 12v Power supply

0 Avnet MicroZed Kit (AES-Z7MB-7Z010-G)
= USB cable (Type A to Micro-USB Type B)
= 4GB SD card

e Avnet ZedBoard Debug Adapter Kit (AES-ZBDB-ADPT-G)
0 14-pin Xilinx PC4 ribbon cable

e ARM DSTREAM unit and Keil pod with wide cable connector
0 20-pin JTAG ribbon cable
O USB cable (Type A to Printer)
0 5v Power supply

e CAT-5 Ethernet cable

=AVNET” ARM DS-5 Tools and Avnet ZED Series : 4

Technical Support

For technical support with any of the instructions, please contact your local Avnet/Silica FAE or
visit the support forums:

http://www.zedboard.org/forum

http://www.microzed.org/forum

Additional technical support resources are listed below.
ZedBoard Kit/MicroZed Kit support page with Documentation and Reference Designs

http://www.zedboard.org/content/support

http://www.microzed.org/content/support

For Xilinx technical support, you may contact your local Avnet/Silica FAE or Xilinx Online
Technical Support at www.support.xilinx.com . On this site you will also find the following
resources for assistance:

e Software, IP, and Documentation Updates

e Access to Technical Support Web Tools

e Searchable Answer Database with Over 4,000 Solutions
e User Forums

e Training - Select instructor-led classes and recorded e-learning options

Contact your Avnet/Silica FAE or Avnet Support for any additional questions regarding the
reference designs, kit hardware, or if you are interested in designing any of the kit devices into
your next design.

http://www.em.avnet.com/techsupport

For ARM technical support, you may contact your local Avnet/Silica FAE or ARM Online
Technical Support at www.arm.com/support .

==AVNET ARM DS-5 Tools and Avnet ZED Series : 5

I

Debugging a Linux Application

In this tutorial we will boot the target board with the same Linux kernel and root file

system used in tutorial #7, and then download and debug an application.

If you have completed tutorial #7 (Streamline), the software setup here is exactly the
same. Detailed instructions for creating the required software environment on both the
host platform and ZED target are contained in the Appendices of tutorial #7, so it is

highly recommended that tutorial #7 be completed prior to this tutorial.

Set the ZED target Boot Mode to SD boot as shown below:

For ZedBoard:

To begin the procedure, set the ZedBoard Boot Mode to SD boot using jumpers JP11 to
JP7 set to the following:

JP11

JP10

JP9

JP8

JP7

Position

SIG-GND

3V3-SIG

3V3-SIG

SIG-GND

SIG-GND

For MicroZed:

JP3

P2

JP1

Position

2-3

2-3

1-2

To begin the procedure, set the MicroZed Boot Mode to JTAG only using jumpers JP3 to
JP1 set to the following:

Connect an Ethernet cable and micro-USB cable between the ZED target and your host
PC, as per previous tutorials. The host address should be on the same subnet as the ZED
target, which has an address of 192.168.1.10.

assumed to be 192.168.1.50.

This tutorial assumes you already have your SD Card loaded with files from tutorial #7.
If you have not already done so, insert the card into the SD card slot on the underside of
the target.

== AVNET

ARM DS-5 Tools and Avnet ZED Series : 6

For this tutorial, the host address is

Boot the Target

On power up, the target will initialize the PS subsystem, configure the PL, load and run
the FSBL and load and run U-boot. U-boot will then load the Linux components and
boot the target to a Linux command prompt. Use the following procedure:

1. Power the target.
2. Wait for the blue configuration LED to illuminate. Start Tera Term Pro on the
host.
3. Wait for the boot to complete. You can verify the target is fully operational
by entering the following commands at the prompt in Tera Term Pro:
a. uname-n
b. uname -r
c. ping 192.168.1.50 (substitute the IP address of your host computer)
d. Ctrl-C to terminate the ping operation

— RV

File Edit Setup Control Window KanjiCode Help

++ Starting telnet daemon

++ Starting http daemon

++ Starting ftp daemon

++ Starting dropbear (ssh) daemon

++ Starting gator daemon

rcS Complete

/ # wemacps eB00b0OO0.ps{-ethernet: Set clk to 124999998 Hz
wemacps eBABLAOAO .psi-ethernet: link up (1080/FULL)

/ # uname -n

192.168.1.10

/ # uname -r

3.6.0-%11inx-00210-g34T34ca

/ # ping 192.168.1.508

PING 192.168.1.58 (192.168.1.58): 56 data bytes

64 bytes from 192.168.1.50: seq=0 t1t1=128 time=0.534 ms
64 bytes from 192.168.1.50: seq=1 tt1=128 time=0.313 ms
64 bytes from 192.168.1.50: seq=2 tt1=128 time=0.222 ms
§E bytes from 192.168.1.50: seq=3 tt1=128 time=0.313 ms

-—— 192.168.1.50 ping statistics —-
4 packets transmitted, 4 packets received, 0% packet loss
rounﬁ—trip minfavg/max = 0.222/0.345/0.534 ms

Linux Command Line Results on Target

ARM DS-5 Tools and Avnet ZED Series : 7

Configure a Remote System Explorer (RSE) Connection

Debug communication with the ZED target will be done over an Ethernet cable between
the target and our host. Before we can do this we must inform DS-5 how to configure

the connection. If you have already completed tutorial #7, you may skip to the next
major section.

1. Open the DS-5 IDE on your host PC. For the purposes of this tutorial, we will use
the workspace name ZedBoard DS-5 WS, but any name/location you choose is
fine (including the default workspace).

= Workspace Launcher £

Select a workspace
Eclipse Platform stores your projects in a folder called a workspace.

Choose a workspace folder to use for this session.

Workspace: C:A\Users\Ron\Documents\ZedBoard D5-5 WS - Browse...

[] Use this as the default and do not ask again

|_ OK | | Cancel

Select a DS-5 Workspace

2. If you do not have a Remote System tab in the panel with Project Explorer, from
the main menu select Window | Show View | Other | Remote Systems |
Remote Systems. Click the OK button and select the Remote Systems tab.

T Debug C | ig ProjectE | |2 Streamli ﬂﬁﬂemnteS &g = B8
£ 8| |Bl% ¥
4 E’ Local
: *f'n Local Files

% Local Shells

DS-5 Remote Systems Tab

==AVNET ARM DS-5 Tools and Avnet ZED Series : 8

4,

= Mew Connection

Select Remote System Type

-
Any distribution of Linux

3. Anywhere inside the panel, right click and select New Connection. In the New

Connection window, select Linux and click the Next button.

Systern type:
type filter text

= General
Ty FTP Only

_& Linux
El Local
% 55H Only
uniz Unix

Windows

Create a Remote System Connection for Linux

leave it unchanged. Click the Next button.
i -
= Mew Connection F

In the Host name field, enter the target IP address of 192.168.1.10. This will be
copied into the Connection name field. You can optionally enter a description if
you wish. The Parent Profile name will be dependent on your host platform, but
| o

Remote Linux System Connection

Define connection information
HP-Workstation

Parent profile:
192.168.1.10

Host name:
Connection name: 192.168.1.10
ZedBoard Linu;d

Description:

[7] Verify host name

AVNET

il

RSE Connection Parameters for the ZED Target

ARM DS-5 Tools and Avnet ZED Series : 9

5. Select the ssh.files configuration (Secure Shell), as we will use this protocol to
communication with the target instead of FTP. Click the Finish button.

- .
= MNew Connection - | E@ﬂ

Files

Define subsystem information

Configuraticn Properties
[C] ftpfiles Property Value
ssh.files

Available Services

A9 Ssh / 5ftp File Service
ﬁ# 55H Connector Service
=] 55H Settings

Secure Shell Configuration

6. Inthe Remote Systems tab, right-click on the new entry for the target IP address
and select Properties.

5 Debug C E‘_‘l ProjectE | [+ Streamli J{ﬁ Remote 5 &3 =0
£ 8| @ Bls~
4 E’ Local
*ED Lecal Files

% Local Shells
a [y 192168110
Ty Sftp Files
Shell Processes
% Ssh Shells
é,i—' Ssh Terminals

New Remote System Configuration for Target

AVNET ARM DS-5 Tools and Avnet ZED Series : 10

electronics morketing

7. Select the Host entry and click the arrow next to the Default User ID. Enter root
for the ID and click the OK button.

= Properties for 192.168.1.10 IR
type filter text Host oo v w
Connector Services X
Host Resource type: Connection to remote system
Parent profile: HP-Workstation
System type: Linux
Host name: 192168110 -
Connection name: 192168.1.10
Default User ID: EJ root
Description: ZedBoard Linux

Create root Login for ZED Target

Now the Remote Systems configuration for the ZED target is complete, we can
use this in the future to establish a debug connection for any Linux application

project in DS-5.

Start the Xming X-Server

You should already have created a configuration file called config.xlaunch in tutorial #7.
If not, you can follow the detailed instructions in Appendix Il of Tutorial #7 to install and

configure the X-Server.

1. Double-click on the config.xlaunch file on your host computer. You will see a
small icon appear in the system tray to indicate that the server is running and

ready to accept connections. N

;AVNET” ARM DS-5 Tools and Avnet ZED Series : 11

Create Gnometris Debug Configuration

Gnometris is an open-source Linux implementation of the well-known Tetris game. |If
you have completed the set-up requirements, you will already have a gnometris project
in the C/C++ perspective of DS-5. In order to load, run and debug the application we
must inform DS-5 of the connection parameters between your host computer and the
target Linux platform.

1.

2.

In the Project Explorer tab, right click on the gnometris project and select Debug
As | Debug Configurations from the drop-down menu.

In the left Debug Configurations panel, select DS-5 Debugger and click on the

New Configuration T button.
Enter Gnometris Debug for the configuration Name.

In the filter text box, enter Avnet to show only the configurations relevant to our
target. Move your mouse cursor inside the panel and click on the arrow that
appears to the left of Avnet to expand it. Also expand ZedBoard_JTAG and
Linux Application Debug. Select the Download and debug application
operation.

Mame: Gnometris Debug
<I= Connection E]ﬁ;.Files Bt Debugger| f RTOS Awareness | (9= Arguments

Select target

Select the manufacturer, board, project type and debug operation to use, Currer

Avnet
ZedBoard_JE1
ZedBoard_JTAG
Bare Metal Debug
Linux Application Debug
Ceonnect to already running gdbserver
Download and debuo apolication

D5-5 Debugger will download your application to the target systemn and then stz

Connections

RSE connection |192.168.1.10 (Zedboard Linux)

Address:
gdbserver (TCP) | pore: 5000
| Use Extended Mode

Gnometris Connection Configuration

ARM DS-5 Tools and Avnet ZED Series : 12

5. Notice that DS-5 is aware that the RSE connection established earlier is the

correct connection to use for this debug session. It automatically selected the
correct IP address and port (5000) to use. Also note that the Debug button is
still grayed out. DS-5 does not activate the button until all required
configuration items are filled in, and displays the current known issue near the
upper left of the window.

P

= Debug Configurations

Create, manage, and run configurations

€3 [Files]: Mo target download directory details entered

DS-5 Issue Report Line

In this case the issue indicates that the Files tab does not have a target download
directory specified, so select the Files tab to complete the information.

In the Target Configuration section, we need to tell DS-5 what application
executable file to download. We do not need debug symbols on the target, as
this association is made on the host computer (within DS-5). We can therefore
use the stripped version of our gnometris application, which we will find in the
DS-5 workspace.

Click the topmost Workspace button and select gnometris | stripped |
gnometris for the application to download. Click the OK button to populate the
text box.

(= Open [= i‘z-_r

Select a file:

. 2% Hilinx-Zynq_ZedBoard_UART -
4 =% gnometris
=] «cproject
=] .project
Makefile
= README.txt
I » = gnome-games-2.26.2
gnometris
gnemetris-RTSM-examplelaunch
I gnometris-gdbserver-examplelaunch

m

&1} libgames-support.so
@ readme.html
4 [= stripped
| gnometris
I st libgames-support.so
. 125 hello -

|/?\'| OK l | Cancel

—EA‘,NET” ARM DS-5 Tools and Avnet ZED Series : 13

7. Next, we need to specify the Target download directory as reported in the
issues line. We must use a writable location on the target, which in this case is
the directory of the root user we will be using to log in. Enter /home/root in
the text box.

Target Configuration

Application on host to download:

S{workspace_loc/gnometris/stripped/gnometris}

File Sj,rstem...| |Workspace... V| Load symbols

Target download directony:
fhome/root

The Debug button is now available, indicating that the minimum requirements
have been met, but there is still more to do for an optimal debug session.

8. In order to associate the source lines with the executable code running on the
target, DS-5 needs to be told where to find a file with symbol information. This is
contained in the Debug version (unstripped) of the gnometris application. In
addition, and this would be known to the programmer even if it is not apparent
in our brief tutorial, the gnometris program requires an additional library that is
not part of the standard linux system. The library will be loaded at runtime and
we must tell DS-5 where to obtain it.

Click on the lower Workspace button. Select gnometris | gnometris and click
the OK button to populate the text box.

= Open =NRER X

Select a file:

, 2E Kilinx-Zyng_ZedBoard_UART -
a == gnometris

=] cproject

= .project

Malkeefile

|=| README bt

. = gnome-games-2.26.2
gnometris

m

gnemetris-RTSM-examplelaunch
gnometris-gdbserver-example.launch
@. libgames-support.so
@ readmehtml
4 [= stripped
gnometris
5 libgames-support.so
. 25 hello -

@ QK] | Cancel

ARM DS-5 Tools and Avnet ZED Series : 14

9. Next, click on the + button and click the new Workspace button below the Other
files on host to download button. This is where we will add the required library.

Select gnometris | libgames-support.so and click the OK button to populate the
text box.

Your Files tab should now appear as shown below:

Mame: Gnometris Debug

== Connection @Files #% Debugger| & RTOS Awareness | (9= Arguments | |
Target Configuration
Application on host to download:

Hworkspace_loc/gnometrs/stripped/gnometris}

File System...‘ IWorkspace...I Load symbaols

Target download directory:
fhome/root

Target working directory:

Files

lLDEd symbols from file v]

] S{workspace_loc:/gnometris/gnometris}

\ File System... J IWorkspace... J

IOtherfiIe on host to download "I

_| Siworkspace loc/gnometris/libgames-support.so}

\ File System... J IWorkspace... J

DS-5 Files Tab

___AVNET*’ ARM DS-5 Tools and Avnet ZED Series : 15

10. There is one more application specific detail to take care of, and that is to tell
gnometris where it should send its display output. We can have DS-5
communicate this information to the application via the Arguments tab.

Click on the Arguments tab. Enter the display parameter as shown in the
diagram below (substitute your host IP address if it is different). Don’t forget the
:0 at the end! (It specifies the number of the X-Server to use, in the event we
have multiple X-Servers running on the host).

Mame: Gnometris Debug

4= Connection |G} Files | £5 Debugger i RTOS Awareness | (9= Arguments |
Program Argurnents

--display=192168.1.50:0

DS-5 Arguments Tab

Click the Apply button to save the configuration, and then click the Debug
button. If you are asked to switch to the DS-5 Debug perspective, click the Yes
button. DS-5 will initiate the debug connection to the target, download the
application, execute it with the arguments we specified, and start the debug
session using the parameters in the Files tab. If you are prompted for a
password, enter “root” and click OK.

The application will stop on the main entry point. In the main.cpp source
window, you will see the application halted on line 43.

Gnometris Debugging in Detail with DS-5

If you have use the Xilinx SDK in the past, much of what you see in the DS-5 debug
perspective should look quite familiar. This is because both implementations are based
on Eclipse, an open-source framework for the creation of development tools. Rather
than simply concentrating on the basic aspects of debugging (single-stepping, setting
breakpoints, looking a variable values), all of which is available in every source level
debugger, we will try to focus on the features that differentiates the DS-5 debugger
interface from the one you are used to in the SDK.

As stated earlier, Gnometris is an open source implementation of the old Tetris game.
There is no graphical output as yet, because the application was halted by the debugger
before the main window has been activated. You will get a chance later in this session
to see the game operate via the X server, and play the game running on the target.

1. We will begin by setting a breakpoint in the function that rotates shapes as they
“fall” down the display, called BlockOps::rotateBlock. Click on the Functions tab

==AVNET ARM DS-5 Tools and Avnet ZED Series : 16

I

AVNET ARM DS-5 Tools and Avnet ZED Series : 17

I

and to quickly locate the function click on the Search button v Begin typing

the name into the text field, until the function is located, and then click the OK
button. Double-click on the function name to set a breakpoint at the first
executable line of code. You will see the breakpoint indicator turn red, and you
can check that the breakpoint is set in the Breakpoints tab.

While we are in the Breakpoints tab, notice that the buttons along the top
change with each tab selection. You can discover the operations of active
buttons in any tab by hovering the mouse cursor over the button. In the

Breakpoints tab, the & button skips all active user breakpoints (not internal
breakpoints set by the debugger, which cannot be skipped or disabled). Click on
this button to see the breakpoint symbol next to our single breakpoint change,
and notice in the Commands tab to the left that each action is recorded with the

command line that drives the DS-5 function. The command history can be

recorded and saved as a script to automate repeated operations. Click the -

button again to re-enable the breakpoint.

Select our rotateBlock breakpoint, and click on the “= putton. This will open
the file containing the breakpoint in the source window, and is a handy way to
quickly view the code in question.

We want to set one more breakpoint in our code, this time in the
BlockOps::generateFallingBlock function, at line 297. This time, click anywhere
in the blockops-noclutter.cpp tab in the Source window and hit <CTRL>-L. Enter
297 in the pop-up window and click the OK button to go directly to the line.
Double-click in the left margin of line 297 to set a breakpoint here in the
conventional fashion.

In the Debug Control tab, click the run ® button to start the application. An X
window containing the game console will open. Notice in the Debug Control tab
the call stack shows that the application is running.

% Debug Con &2 . [T Project Bxp | o] Streamline =B

24

418)

‘ Gnometris Debug connected -
= Active Threads
Thread 671 #1 running

m

-

Gnometris Application Running in Debugger

4. Click in the console to set the focus to the X-Server and enter <CTRL>-N to start
a new game. The Debug Console indicates that the program has hit a
breakpoint, which you can confirm in the Source window.

Take a few minutes and peruse the contents of the following tabs, performing
the suggested operations to get a better feel for the operation of the DS-5
debugger. In some cases it will be exactly the same as the SDK operation, while
in other cases there are additional capabilities not found in the SDK debugger

Variables:

a. Highlight the posx line (expand this to see it) and right-click to show the
context menu. Change the representation to different formats.

b. Select Show in Memory, and notice the contents of the Memory tab
change.

c. Select Show in Disassembly to go directly to the assembly line where the
value is loaded.

d. Take note of the Location column and select the value of the variable
contained in a register.

e. Select Send to | Expressions View to capture the variable for quick
reference during execution.

f. Note the Linked button contained in many of the tabs. When multiple
debug sessions are active concurrently, this button can be used to keep
the contents locked to a particular debug configuration, rather than
toggling to the active session.

“F. Linked: Gnometris Debug -

We have only a single active session here, so we won’t be using the link
feature, but this is very useful for multi-core debugging.

Registers/Memory/Disassembly:

a. Open the Registers tab and locate the value contained in the register
variable you viewed in the Variables tab. Confirm it is the same value.

b. Scroll down to the program counter (PC). Single step the program a
couple of times and note that the value changes, and all changed values
are color highlighted. Toggle back to the Variables tab and note the
highlighting also occurs for changed values there.

c. Backin the Registers tab, highlight the PC line, right-click and select Show
Memory Pointed to by PC. The Memory tab will display the code lines at
that location (in Hexadecimal).

d. Right-click again and select Show Disassembly Pointed to by PC. The
Disassembly tab shows the code lines in ARM assembler.

e. Click on the Memory tab and drag it into the lower panel. This move
feature is available for many of the tabs and allows you to customize the
display as suits your needs at the moment. With both the Disassembly

=AVNET” ARM DS-5 Tools and Avnet ZED Series : 18

AVNET ARM DS-5 Tools and Avnet ZED Series : 19

I

and Memory views open, you can monitor the operation of the program
in several formats at once. Useful when debugging problems that may be
related to hardware glitches in memory.

f. Put $sp in the Address field of the Memory tab and put 128 in the Size
field. Hit the Enter key. This is the top of the stack (the stack grows
downward into lower addresses. This is a very useful shortcut to see the
stack contents when a program is misbehaving.

If at any point you inadvertently change something that affects program
operation and causes a crash or exit, you can restart from the main entry point

by clicking the restart =l putton in the Debug Control tab. Also, if you wish to
restore all panels to their default positions and sizes, select Window | Reset
Perspective from the main menu.

Use the skip breakpoints button (remember?) to temporarily disable all user
breakpoints in the program. Now you can play the game for a little bit to give
yourself a break and see how the game operates on the embedded platform.

Click the run button and make the X window your current view. You will see a
new block created and start to “fall” down the game console. The arrow keys on
your host keyboard control the operation:

Left arrow: Move block one position left
Right arrow: Move block one position right
Up arrow: Rotate block 90 degrees

Down arrow: Accelerate fall rate

o0 oo

When you have had enough play time, click the pause YU button to stop the
game at the current execution line. Re-enable all the breakpoints, but disable
the breakpoint on line 297 by unclicking its select box. You should have only the
internal breakpoint and the user breakpoint in the rotateBlock function active.

Click the start button, set focus to the X window and hit the Up arrow key to
rotate the block. This will cause the program to hit the breakpoint we set earlier
in the block rotate function.

If you want to quickly examine variable values in the Source window, without
having to open the Variables tab, there is a temporary version of the Expressions
tab called the Expression Inspector. Select a variable by double-clicking on it in
the source, right-click and select Inspect. The Expression Inspector will pop up
with the variable information. You can add other variables by typing in their
names, or using drag and drop. Try this in the rotateBlock function by selecting

posx to open the Expression Inspector, then add posy and blocknr to the
window. You can close the Expression Inspector when you are done.

8. The Memory tab displays memory in various formats. It has an Address field
which is an expression for the starting address and a Size field for the number of
bytes to show. We tried this out earlier when we put the stack pointer (Ssp) into
the address field.

You can also set the Address field by dragging selections from other views, like
Variables or Expressions, and dropping it into the Memory view. We can try this
to display the contents of the local variable t->defaultPixmap.

In the Debug Control tab, select the Tetris::keyPressHandler frame.

#5 Debug Control 23 . 75 Project Explorer| 4] Streamline Data

™ Core 0 with Trace disconnected
& Dual CPU Core 0 disconnected
& Dual CPU Corel disconnected
4 W& gnometris connected
4 = Active Threads
4 i Thread 673 #1 stopped on breakpoint #3

BlockOps:rotate

Tetris:keyPressHandler+0xC8

O e T el o i [T
lwBiRl FF4Bs-
LR L) mla]

== All Threads

o

o

Now in the Variables tab, which has changed to represent the new frame
selected, locate the member t->defaultPixMap. Select the row, right-click and
select Show Dereference in Memory. Change the Memory size to 128.

1%} Disassembly | 4 Trace |'H Memory &2 = Modules |] Events| o Outline| ‘H] 2:Memory RefreshOFf » o * Xn v ¢ ¥ =0
‘&, Linked: gnometris =
fy & g v t->defaultPixmap 128
BxBBa39458 BX2F Bx77 Bx7l Bx69 ex74 ex65 ©xel ©x62 8xe(Bxe5 Bx2F Bx7@ ©xeB B8x67 exe4 8x6l Jfwriteable/pkgda
BxB2a39468 Bx74 ©@x6l @x2F ©x67 ex6E ex6F ©xeD ex65 8x74 Bx72 B8x69 8x73 Oex2F ex78 exe9 ex78 ta/gnometris/pix
BxBBa39478 Bx6D B@x6l 8x7@ Bx73 Bex2F 8x67 BxBE B8x6F Bx6D Bx65 B8x74 Bx72 B8x69 8x73 8x2E 8x73 maps/gnometris.s
BxBBB39488 = Bx76 B8x67 8wdd 6xBe Bxbl ©x0@ Oxed ex0d Ox0d B8xB8 B8xBd 6xBe BxBe Bxed Oxed Bexe’ @ vg
BxBBa39498 BxB8 Ox88 ExBd BxBd Ox69 BxBE B\xBE OxB0 BxB8 BxBB OxBO BxBE BxBB OxBB 0xB0 Bx08 i
BxBBa394A8 BxB@ exBe exB2 Bxe2 exBe Bx3A Bx87 exBd 8x98 Bx88 8x82 8xk@ Bx87 Bex6E 8x82 exeés : n
BxB2639488 BxB@ GxB8 ExBd BxBd 6xBe BB Bxdd 6xB0 BB BxBB BxB0 BxBE BxBla BxlE 8xid exée
BxBBa394Cs Bx0d Ox88 Ox00 ©xed Ox8e Oxed BxPd ex8e 6wed BxPe Ox8p Oxee Bxed Oxbe 6xee Boxes

The Hex and character values in memory for the array contents are shown in the
memory window.

ARM DS-5 Tools and Avnet ZED Series : 20

9. You have likely noticed that debugging actions are captured in the Commands
tab along with the responses. Commands are also recorded in the History tab.
You can control the debugger from the command line through the Command
text box in the Commands tab.

Type set st into the textbox in the Commands tab, then hold down the <CTRL>
key and hit the space bar. This provides context-sensitive help, and can be used
in many other places, such as in the Address field of the Memory tab. Hit the
<ESC> key to remove the pop-up help window.

The next command is used to single-step the program. Enter next in the
command line and hit the Enter key. You will see the source window single step
and the command appears in the Command tab, along with the response. Click
the Submit button to repeat the command.

Now open the History tab. You will see the two next commands (no responses)
at the bottom. Select the two next entries (click on one next entry, then <Shift>-
click on the other next entry to add it),

inext

next

right-click, select Copy, open the Script tab, right-click and select Paste. In the
pop-up window, enter Next for the file name and click the Save button. Now
you have a script with the two Next entries saved as Next.ds. You can execute

the script by pressing the Play by button in the Script tab.

B Com | Histor “‘3:’) Script &3 8 Remo B Termi = O

= B 2 R oo
(=i Next.ds

This can be very useful in debugging when you must repeatedly execute a
sequence of commands, or if you want to create canned examples for
demonstration purposes.

10. We can learn a little about how the game is designed by using the command line
to examine the block selection parameters. Re-enable the breakpoint in the
generateFallingBlock function (remember? In the Breakpoints tab). Now run
the game until it stops on that breakpoint.

==AVNET ARM DS-5 Tools and Avnet ZED Series : 21

I

11.

12.

Enter the command set var blocknr = 2 and hit the Enter key (or click the Submit
button). Now run the game again and see what shape you have selected.

Can you determine what value the square block has using this method?

Now let’s combine what we’ve learned about using the command line, creating
scripts and breakpoints to “fix” the game to our advantage. You should be
stopped in the generateFallingBlock breakpoint, on line 297.

First, create a new script file using the set var blocknr assignment using the value
you determined for the square. Save the script in the default location with the
name favorite-block.

Next, go to the breakpoints window. Select the breakpoint for line 297, right-
click and select Properties. Locate the On break, run script panel and use the
drop-down arrow on the text box to select your favorite-block.ds script (Note
that the pathname will be specific to your host computer). Click the Continue
Execution checkbox so that each time the breakpoint is hit, our script will
execute and then the program will automatically continue.

On break, run script:

ChUsers\Ron\Documents) Streamlinetfavonite-block.ds - -F||: System... | | Workspace...

| ontinue Execution
Silent

Click the OK button to save the property changes, and run the game.

You should now see only squares as the falling blocks. When you are satisfied

with this, stop the program by hitting the pause - button. If the game
finishes, you can simply start a new game in the X window.

Now you may have noticed the preview window still shows a random block,
rather than our “desired” square block. Using your program analysis skills and
the techniques you have learned, make additional enhancements that will do the
following:

a. Show the square in the preview window.

b. Make the square shapes red.

As a hint, everything you need to do is contained inside the generateFallingBlock
function. Give it a try!

==AVNET ARM DS-5 Tools and Avnet ZED Series : 22

I

There are many more features that can be explored in the DS-5 debugger that would
take a full day class to touch upon. But in the limited time available you have had a
good introduction to some of the capabilities of the software system. Much more is
possible when using the DSTREAM hardware tools, but that will wait for another day.

Solution

Square block = 6
Colorred=0

To rig game:
e Make a new script with the following lines:
0 setvar color_next=0
0 setvar blocknr_next=6
e Set a breakpoint at line 307
e Inthe breakpoint properties, execute your new script and continue execution

Revision History

Date Version | Revision

25 June 13 00 Initial Draft

17 Sept13 |01 Release
Resources

http://www.zedboard.org

http://www.xilinx.com/zynq

http://www.arm.com/products/tools/software-tools/ds-5/index.php

EAVNET” ARM DS-5 Tools and Avnet ZED Series : 23

