ARM DS-5 Tools and Avnet ZED Series

H#4

Debugging Two Processors using ARM DSTREAM
and Avnet ZedBoard or MicroZed

ON-RAMP

TECHNICAL

SESSIONS

Sept 2013
Version 01

—E;_—AvNET» Copyright © 2013 Avnet Inc. All rights reserved

Table of Contents

ARM DS-5 ToOISs and AVNEt ZED SEII€S ...c.ueeiiuiieiiiieiiiteeiee ettt s 3
ReqUIred INSTAllatioNnscoocciiiiiiiei e e e et e e e e e e e e eabrraeeeeeeeas 4
TEChNICAl SUPPOIT ...t e s s e e e e saba e e e s sabaeeeessraeeeas 5
Debugging TWo Cores Simultan@ouUSIY........ueeeviiiiiicciiieeiieceeccreeee e 6

Create C Projects from EXisting Files in DS-5coovviiiiiiiiiieiiiiieeecieee e 6

Debug Two Cores Simultan@ousIyeviiiieiie e e 14
REVISION HISTOIY ..vvvviiiiiiiiiiiiiiiiitiiiiiiiererrererreererrrerererererererrereseeseseeeseeeeeeeteeeeeteeeseseeeeeeeeaeaanes 22
RESOUICES ..ottt e 22

EE_————_AVNET” ARM DS-5 Tools and Avnet ZED Series : 2

|

ARM DS-5 Tools and Avnet ZED Series

This tutorial is one in a series of step by step instruction manuals. Together they document the
procedures necessary to utilize the ARM Development Studio 5 (DS-5"") Software Suite and the
DSTREAM Debugging tools with the Avnet Zynq Evaluation and Development (ZED) boards.
These tutorials can be used on their own, or in combination with Avnet online videos and
OnRamp Technical Session™.

The ARM software and hardware tools provide a powerful debugging suite for processor-based
systems built around the dual Cortex-A9 cores present in the Xilinx Zynq SoC, at the heart of the
Avnet ZED boards. A Linux software developer can simultaneously debug applications and
kernel module code, with separate control over each thread. You can step through Linux boot
code, first stage bare metal boot code, and bare metal applications. When used in concert
with the Xilinx Vivado tools for FPGA fabric development, the ARM debugger and Internal Logic
Analyzer (ILA) IP can be cross-triggered to stop on software and hardware breakpoints, or when
a hardware event occurs. For difficult-to-isolate intermittent faults, DS-5 provides access to the
Cortex-A9 on-chip Trace facility. Once your embedded system is running correctly, DS-5 uses
Streamline, a graphical system profiler, to identify performance bottlenecks in your design to
ensure top-shelf operation.

This tutorial series begins with the most basic tool configuration and board connection. It takes
you all the way through to the most complex aspects of hardware/software co-debugging to
root out design errors that are otherwise apparent only in very complex use cases, or worse,
after a product is released. Together the ARM DS-5 tools, Xilinx Vivado and Avnet ZED boards
provide an unparalleled combination to compress design timelines, cut project costs and
optimize your product for the marketplace.

=AVNET” ARM DS-5 Tools and Avnet ZED Series : 3

|

Required Installations

Software

The recommended software for this tutorial series is:

e ARM Development Studio 5 (Exact version used is 5.14, build 1702)

e Xilinx ISE WebPACK 14.5 (Free license and download from Xilinx website)

e Cypress CY7C64225 USB-to-UART Bridge Driver (for ZedBoard serial output)
e Silicon Labs CP2104 USB-to-UART Bridge Driver (for MicroZed serial output)
e Tera Term (Exact version used is V4.75)

e Xilinx Software Development Kit, version 14.5

e For hardware/software co-debugging, Xilinx Vivado 2013.2

Hardware

The targeted hardware consists of the following:

e PC workstation with at least 5 GB RAM, 30GB free hard disk space, Windows 7 64-bit
operating system, and a wired GB Ethernet connection

e Available SD card slot on PC or external USB-based SD card reader

e One of:

0 Avnet ZedBoard Kit (AES-Z7EV-7Z2020-G)
= USB cable (Type A to Micro-USB Type B)
= 4GB SD card
= 12v Power supply

0 Avnet MicroZed Kit (AES-Z7MB-7Z010-G)
= USB cable (Type A to Micro-USB Type B)
= 4GB SD card

e Avnet ZedBoard Debug Adapter Kit (AES-ZBDB-ADPT-G)
0 14-pin Xilinx PC4 ribbon cable

e ARM DSTREAM unit and Keil pod with wide cable connector
0 20-pin JTAG ribbon cable
O USB cable (Type A to Printer)
0 5v Power supply

e CAT-5 Ethernet cable

=AVNET” ARM DS-5 Tools and Avnet ZED Series : 4

Technical Support

For technical support with any of the instructions, please contact your local Avnet/Silica FAE or
visit the support forums:

http://www.zedboard.org/forum

http://www.microzed.org/forum

Additional technical support resources are listed below.
ZedBoard Kit/MicroZed Kit support page with Documentation and Reference Designs

http://www.zedboard.org/content/support

http://www.microzed.org/content/support

For Xilinx technical support, you may contact your local Avnet/Silica FAE or Xilinx Online
Technical Support at www.support.xilinx.com . On this site you will also find the following
resources for assistance:

e Software, IP, and Documentation Updates

e Access to Technical Support Web Tools

e Searchable Answer Database with Over 4,000 Solutions
e User Forums

e Training - Select instructor-led classes and recorded e-learning options

Contact your Avnet/Silica FAE or Avnet Support for any additional questions regarding the
reference designs, kit hardware, or if you are interested in designing any of the kit devices into
your next design.

http://www.em.avnet.com/techsupport

For ARM technical support, you may contact your local Avnet/Silica FAE or ARM Online
Technical Support at www.arm.com/support .

==AVNET ARM DS-5 Tools and Avnet ZED Series : 5

I

Debugging Two Cores Simultaneously

In this tutorial we will import two standalone bare metal projects into the DS-5 IDE, and
use the USB-JTAG connection via the DSTREAM to download both applications, one to
each of the ARM Cortex-A9 cores on the ZedBoard or MicroZed.

During this session, we will be using two programs that write to a common memory
area in DDR3. We will boot the target from an SD card to initialize the Processor
System (PS), and enter the DS-5 environment to import and debug our applications on
the dual ARM CPUs.

You will need application source files and SD card files to complete these instructions.
The files are part of the download package that included this tutorial. Browse to the
location on your host where the download package was decompressed, and look for the
following folder:

<Download package folder>\Support04
For the purposes of this tutorial we will assume the files exist in folder:

C:\OnRamps\Support04

Create C Projects from Existing Files in DS-5

1. Open the DS-5 IDE on your host PC. For the purposes of this tutorial series, we
will continue to use the ZedBoard DS-5 WS workspace created in an earlier
lesson.

= Workspace Launcher

Select a workspace
Eclipse Platform stores your projects in a folder called a workspace.

Choose a workspace folder to use for this session,

Workspace: Ch\Users\Ron'\Documents\ZedBoard DS-5 WS - Browse...

[Use this as the default and do not ask again

| OK | | Cancel

Select a DS-5 Workspace

“E—______AVNETW ARM DS-5 Tools and Avnet ZED Series : 6

|

2. If you have completed each earlier tutorial in the series, the C/C++ perspective of
your workspace will appear as shown. If your workspace opened in another

perspective, switch to the C/C++ perspective now by clicking on the icon
indicated below.

k=)

.
. 0
Fie Edt Sowne Relsoiee Mawgale Search Pogt Run Window Hep
- e B g-ad-F-0- K-B- B-0-Q- &7 [FEo b=l =% w - -E
Propeet Speardn O L0 bellaae 11 FErT T . Tag
= . e . MoE e W
1 e Weerld Bare Metal U bk

& msndin, char)
sleclude <stdio.hr

int sainlint arge, char®® arge)

printf{"Hello werldin™}z
return @

*. Protlems |« Teie | [Comote = Proparten r =

Me ool by diiply o this lime.

[
0 Witable Srnast lrcent 1¥:1
DS-5 C/C++ Perspective
A‘,NET“ ARM DS-5 Tools and Avnet ZED Series : 7

= electronics '!’J["E‘llnf_f

3. We will begin by creating a new software project in the C++ perspective. In the
main menu, select File | New | C Project.

v el

C Project —
Create C project of selected type

Project nam:i Dual CPU Core 0

o Use default location

C\Users\ Ror\Documents\Z edBoard D5-5 W5 Dual CPU Con

default

Project type Tealchaing:
ARM Compiler

= Bare-metal Library
v [Exseutable

= Shared Library
+ (= Static Library

= Makefile project

#| Show project types and toclchains only i they are supperted on the platform

@ Back | Medt > ! | Finish i Cancel

New C Project Window

Name the project Dual CPU Core 0 to indicate that we will be running this
application on Core 0 in the Zynqg chip, and select the Empty Project under Bare-
metal Executable in the Project Type panel. By default, the ARM C Compiler will
be used to generate the object files. Click the Finish button to generate both
Debug and Release configurations.

EA‘,"ET' ARM DS-5 Tools and Avnet ZED Series : 8

4. Now we will import some source code to our empty project from the Support
Files that were unzipped at the beginning of this tutorial. In the Project Explorer
tab, right click on the new Dual CPU Core 0 entry, and select Import from the
drop-down menu.

r 5
= Import : (S| S
————
Select \g
Import resources from the local file system into an existing project. ? 5]

Select an import source:

type filter text

4 = General
@‘ Archive File
=% Existing Projects into Workspace
[, File System
EL Preferences
> (= C/C++
> = CVS
> 2= Install
» [= Remote Systems
> = Run/Debug
. [= Scatter File Editor
» [= Target Configuration Editor
s = Team

i
'\?,' < Back Mext > Finish

Select Files to Import

Expand the General folder, select File System and click the Next button.

ARM DS-5 Tools and Avnet ZED Series : 9

5. Use the upper Browse button to locate the folder where you placed the support
files. In the right-side panel, you will see a list of files to select. Click the check
box next to the three files as shown (A9_CPUO_scat.txt, datacopy.c, main0.c):

File system =:r
Impant resources from the lecal file system. If ;
From directery: C\OnRamps\ Suppanid * | Browse. J
W Suppontd I 7 [:.!.!-dEPLI]hn:ar_mI
1 A _scattst
Bt ben
1¥] Le] datacopy.c
71 [& maind.c
T0 maml.c
| FiterTypes | | SelectAll | | Deselectail |
Inka folder: Dual CPU Core 0 [Browsew |
Oyptions
| Ovenwrite existing resources without waming &‘
| Creste top-level folder
[Advanced >> |

Import Source Files to DS-5 Project

Click the Finish button to complete the import.

;——=——AVNET° ARM DS-5 Tools and Avnet ZED Series : 10

=== olectronics morketing

6. We are going to be running two applications, one on each core, that share a
single memory space. We need to map the executables to specific locations in
memory that will not cause the executables to overwrite each other at load time.

In the Project Explorer pane, right-click on Dual CPU Core 0 and select Properties

from the drop-down menu. Expand the C/C++ Build entry in the left panel and
select Settings.

.
& properties for Dual CPU Core 0 WIS o e S

type filter text Settings f= o <
> Resource
Builders it
4 C/C++ Build Configuration: [Debug [Active]
Build Variables
Discovery Options
Environment & Tool Settings | Build Steps | Build Artifact | Binary Parsers | @ Error Parsers
Logging
Settings 53 ARM C Compiler Command: armecc
Tool Chain Editor (# Preprocessor
> C/C++ General (2 Includes
Project References (22 Source Language
Run/Debug Settings (2 Optimizations I
@ Code Generation
@ Debugging
(2 Warnings and Errors Expert settings:
(# Miscellaneous Command
B3 ARM Assembler line pattern:
@ Preprocessor
(2 Code Generation
@ Debugging
(# Warnings and Errors
(2 Miscellaneous
83 ARM Linker
@ General
(# Image Layout
(2 Libraries
(% Optimizations
@ Additional Information
(2 Warnings and Errors
(2 Miscellaneous

'] [Manage Cenfigurations...]

All options: _0p -g

mn

S{COMMAND} S{FLAGS} ${OUTPUT_FLAG} S{OUTPUT_PREFIX}S{OUTPUT} S{INPUTS}

) oK l [Cancel] |

Dual CPU Core 0 Build Properties

ARM DS-5 Tools and Avnet ZED Series : 11

7. Select Image Layout under the ARM Linker. Click the Browse button and locate
the A9_CPUO_scat.txt file that you imported into your workspace.

Settings

a

ARM C Compiler

_": Prepiotessor

& Inchudes

& Sowrce Language
&t Optienizations

{5 Code Generntion
1 Debugging

& Wemings and Emors
& Miscellanecus

% ARM Lssemibler

& Preprocessor

5 Code Generation
&8 Debugging

“' Wisirursgi andd Erord

20 Miseellimes

I ARM Linkey

RO Bask sddiens [--ro_base]
B base nddress (--rw_base)

Zl bave address (oi_bese)

Cratter file [-—scatter) [Clbers Bon' Documentsi ZedBowd D5-5 WS Dual OPU Core (MAS_ CPLD scatbd

Build Properties — Image Layout

ARM DS-5 Tools and Avnet ZED Series : 12

8. The second change to the default Build Properties is to specify the library type.
This is an optional library specification that causes the executable to be linked
with a library that has been highly optimized for small code size.

Select Miscellaneous under the ARM Linker. In the Other Flags text box, enter:
--library_type=microlib
Settingl

Conigaration | Debueg | Actha |

5 Tool Settingn | & eald Staps Bl Astdact | st Bonary Parsens | G Error Paman

Build Properties - Miscellaneous
Click the OK button to save the Build Properties changes.

9. In the Project Explorer tab, click on the Dual CPU Core 0 entry to ensure it is
selected. From the main menu, select Project | Build Project to compile the
source code. The code should build without errors and create an ELF file called
Dual CPU Core 0.axf. If you expand the project, you will find this file in the
Debug folder.

10. Now that we have our application set up for Core 0, we need to do exactly the
same procedure for Core 1. Follow the same procedure from step 3 through
step 9, with the following changes:

Project name: Dual CPU Core 1
Import Files: datacopy.c, mainl.c, A9_CPU1_scat.txt

When you have completed the second project, we are ready to begin a debug
session on the board.

==AVNET ARM DS-5 Tools and Avnet ZED Series : 13

I

Debug Two Cores Simultaneously

For ZedBoard:

To begin the procedure, set the ZedBoard Boot Mode to SD boot using jumpers JP11 to
JP7 set to the following:

JP11 JP10 JP9 JP8 JP7
Position | SIG-GND | 3V3-SIG | 3V3-SIG | SIG-GND | SIG-GND

For MicroZed:

To begin the procedure, set the MicroZed Boot Mode to JTAG only using jumpers JP3 to
JP1 set to the following:

JP3 JP2 JP1
Position 2-3 2-3 1-2

You should have your DSTREAM, ZED target, ZedBoard Adapter and host PC connected
together as described in Tutorial #1.

To prepare to boot the target, copy™:
C:\OnRamps\Support04\<ZED target>\boot.bin

to the SD card, and insert the card into the SD card slot on the underside of the target.
We will use a bare metal application built with the Xilinx SDK libraries to initialize the
target in preparation for connecting the DS-5 Debuggerz. In later tutorials, we will be
working with Linux, so a logical application to use is the second stage boot loader U-
boot. Since we do not have an OS to jump to at this point, we will want to interrupt our
U-boot application before it tries to transfer control to the non-existent OS, which we

! You may have already copied this file if you followed Appendix | in Tutorial #2.
2 The migration path from SDK to DS-5 is described in Tutorial #9 in this series.

=AVNET” ARM DS-5 Tools and Avnet ZED Series : 14

can do by monitoring the boot in Tera Term and hitting the space bar (or any key) on the
host keyboard.

Power the target, start Tera Term?® and interrupt the countdown process by hitting the
space bar before it attempts to load the Linux kernel. If you aren’t quick enough, you
will get an error message indicating the ulmage was not found, but you will still be at
the U-boot prompt as shown below. If you must power cycle the target, for the
ZedBoard, the Cypress USB-UART driver will remain connected. But for MicroZed the SI
Labs drivers will disconnect. You will need to disconnect Tera Term, then follow the
same connection procedure by selecting the COM port chosen by the USB driver after
every power cycle.

2 COM5:115200baud - Tera Term VT

File Edit Setup Control Window Kanj

5
zyng-uboot> []

Interrupt the U-boot Countdown in Tera Term

1. Inthe Project Explorer tab, right-click on your Dual CPU Core 0 project and select
Debug As | Debug Configurations from the drop-down menu.

2. Right-click on the DS-5 Debugger entry and select New from the drop-down
menu.

3. In the Connection tab:
a. Enter Dual CPU Core 0 for the configuration Name.
Mame: Dual CPU Cored
<= Connection . [i5 Files 8% Debugger|

Configuration Name

% We don’t start Tera Term first because the Uart bridge must be active before Tera Term can detect the
COM port.

==AVNET ARM DS-5 Tools and Avnet ZED Series : 15

I

b. Type Avnet into the filter box in the Select target panel.

on

-ii= Connection - |igrj Files B% Debugger| 78 RTOS Awareness
Select target

Select the manufacturer, board, project type and debug operati

Avnet

Avnet
ZedBeoard_JE1
ZedBoard_ITAG

Avnet ZED Target Configurations

Expand the Avnet, ZedBoard_JTAG and Bare Metal Debug entries as
shown by clicking on the triangle to the right of the entries.

Avnet

4| Avnet
. ZedBoard_JEL
4 fedBoard_ITAG
a4 Bare Metal Debug
Debug Cortex-A9_0 via DSTREAM/RVI
Debug Cortex-A9 1 via DSTREAM/RVI
Debug Cortex-A%x2 SMP via DSTREAM/RVI

Cascaded JTAG Configuartions

Select Debug Cortex-A9_0 via DSTREAM/RVI. This selects processor 0 to
run our application, and indicates we will be using the DSTREAM unit for
debugging.

ARM DS-5 Tools and Avnet ZED Series : 16

Still in the Connection tab, click on the Browse button in the Connections panel.
In the pop-up window that appears, after a few moments you should see a USB
connection to the DSTREAM unit. Select the DSTREAM entry and click OK to
populate the Connection box.

= Select Debug Hardware

Type Name Details
DSTREAM USB:000132 127002

S

DSTREAM Connection

If you do not see an entry in the Select Debug Hardware window, check that your
DSTREAM unit is powered on and is plugged into an active USB port on your host
computer. Make sure all connections are made as specified in Tutorial #1.

Click on the Files tab. Under Target Configuration, click the Workspace button.
Expand the Dual CPU Core 0 and Debug entries by clicking on the triangle to the
right of each entry. Select Dual CPU Core 0.axf and click the OK button to
populate the Application on host to download text box.

Still in the Files tab, in the Files panel click the Workspace button. Use the same
procedure as in the previous step to select Dual CPU Core 0.axf as the file
containing the symbols for debugging.

Select the Debugger tab and click the Apply button. We want our application to
stop as soon as the main entry point is reached, so we leave the Debug from
symbol main selected.

Click the Debug button. We are still in the C/C++ perspective, so Eclipse asks if
you want to switch to the Debug perspective. This will present a new set of
windows specific to the debugging procedures, and since this is what we want
click the Yes button.

= Confirm Perspective Switch

~ 1 This launch is associated with the D5-5 Debug perspective,

Do you want to open this perspective now?

Rermember my decisien

AVNET ARM DS-5 Tools and Avnet ZED Series : 17

i

Confirm Perspective Window

9. After a few seconds to connect and download the application, the Debug
perspective will populate. You should note in the Debug Control tab at the
upper left that our program has stopped on the entry breakpoint on processor 0.

#% Debug Contr &2 [Project Explo | 48 Remote Syst | [+ StreamlineDd| = O
| X K| AP ODRRRT T
W Dual CPU Core 0 connected
ﬁ Cortex-A9_0 #1 stopped on breakpoint
= main
™ Hello World Bare Metal disconnected

DS-5 Control Tab

10. Right-click in the Debug Control tab and select Debug Configurations from the
drop-down menu. Create a second new configuration for the Dual CPU Core 1
project, repeating the sequence you followed in steps 3 through 9. For the
target, select Debug Cortex-A9_1 via DSTREAM/RVI. When you are done, the
Debug Control tab should appear as shown below.

#5 Debug Contr £2 . [Project Exple | 48 Remote Syst | [+] StreamlineDd| = O
MR RXK(AT PO RTT
W Dual CPU Core 0 connected
t Cortex-A9 0 #1 stopped on breakpoint

— 1.3

W Dual CPU Core 1 connected
ﬁ Cortex-A9_1 #1 stopped on breakpoint
= main
M Hello World Bare Metal disconnected

DS-5 Control Tab with Two Applications Stopped

Select each stopped application in turn in the Debug Control tab, and notice that
the Debug Perspective updates to reflect the active configuration. You will see in
the source window that each application is stopped on a for loop, preceding a
semaphore test. In main0.c, the semaphore tests for a 0 value, while in mainl.c,
the semaphore tests for a 1 value.

Although the applications are running on separate cores, they share various
resources, such as the DDR3 memory. The semaphore is used to control access

==AVNET ARM DS-5 Tools and Avnet ZED Series : 18

I

to the memory, so that each application must hold the semaphore before the
other may proceed.

11. Select the Dual CPU Core 0 configuration to orient the Debug Perspective, and
select the Variables tab in the upper right panel. You may resize the panel by
moving the cursor to the double edges until the cursor changes to a double-

arrow o , then drag the edge as you like.

Expand the Globals entry and expand the semaphore variable. We can see in
the debug display that semaphore is actually a pointer to a memory location at
0x20000, and that the value at that location is a random value, as DDR3 has not
been initialized.

(<= Variables i3 ®g Breakpoints | 10 Registers x?':.-' Expressions| fl) Functions ¢ ~ T O
“E. Linked: Dual CPU Core 0 ~
Marne Yalue Type Count| 5ize | Location |Access
=t = Locals 1 variable
+ @ data " . char[160] 160 1280 S:0.00080110 R/W
++ = File Statics (current)
=+ = Globals 2 vanables
+ % display " MTh\x@5" volatile char® 1 32 S:0:0008010C R/W
=+ % semaphore Bxeee2eeee volatile int* 1 32 S0:00080108 RAW
@ [0] 39418961 volatile int 32 5000020000 RO

Dual CPU Core 0 Variables Tab

If we were to start both applications, they would each simply spin on the for
loops, as neither would be able to grab the semaphore for a memory write
because the value is not 0 or 1. We can use the debugger to alter the program
behavior on the fly.

12. With both applications stopped, select the Value column of the semaphore
memory address [0] and replace the random contents with O.

=+ @ semaphore EcRBRZARAR volatile int™
@ [0] @ yolatile int

Initialize Semphore Value

—EA‘,NET” ARM DS-5 Tools and Avnet ZED Series : 19

13. Using the debug controls, start the Core 0 application running E After a few

seconds, pause ﬂthe application. Go back to the Variables tab, and you will
see the semaphore value has changed from 0 to 1, indicating that the application
on Core 0 has completed its memory write and has relinquished the semaphore.

We can see in the mainO.c tab in the Source panel that there is display area
assigned a memory address of 0x30000. Let’s examine the memory at this
location to see what our application has done.

3wolatile int *sema;':lﬁc]r*e = {ri;1t *10x20088 ;
4volatile char *display = (char *)8x38800;
5

Display Buffer

14. Select the Memory tab in the low level panel (lower right) and enter a memory
address of 0x30000 and the number of bytes to 1024. Click the down arrow next
to the Display Width Icon and select 8-bytes. Finally, drag the left edge of the
panel to the left to expand the memory display until you see the view below.

k4
Display Width Icon : |

- l-
L Deswisentd | Mlermeey [Modules | | Eventy o Outhes i O th [t 4
| T, Linkesk Dusl CPU Cgrg =
: -
SoonbbiSbND TnSF USNIRIINNS SxiFIORORORO20NFIF ISP R TRRELFRFAF T URIE RS0 44 1000 e -
SrenbBMAEID B0 OC000NI0I0 ExIOIFIO2OZOTCION0 EONPINSCIOSPRF BwlF 200V NP ‘Y
Sranb MM I NI RN WP NN ST RIFIFRIF Gl I I PN # R RS
- B SDOED CuSF A 2007 20000000 (W J02F 200020 IR NI IR0 GulF J0d0l00lT g f o | & T L
SrawbBMBREE BuIOMIFSFIFNIMI ETCIOIFSFRFICIFIC BnIFIGRIFSFIFTCSE BwibINIRIIFSF b Tl 1Ny i
SoobBiIORAD uADMESANL TITCARIE OAS1ADSEATOZIONNE InllBSONRMSES1604 BmdlCIIOOTEAF ML f|r 4 "pi ef] f)aA
= @ WS OxiCBLATOTOICALEE Ol 11PBERSBE100080 Oud 2 IR0 TOBSCC MOE On BEC 190D 10 MBS 0.pp '} [l [
Srani MRS BNI1CSOXSRICRLCNNS SWRTITTIEOCNSRAARY EwALAGMAIBBMSOMEF BN EASDANBLASOLE FLIN L In
S ML nlAADSMNOISAIILA SIDMIIGBOCLOGENID BniRl IFRIFMCARE 0) TSR] Bg= FIeml
SobebBbBEIN EEITIOTMLIIAN Ex1R1ASMOTESIWMCE EaBRARELAIARAFELM BalAEBLCHMATME * @ g PooWl b
Sribb LA GBCISAABATINMTIA OwddBADRNITEOZINT EnBIMGICITMELONMA lIIPCCMIMAEML S pau 174 @4 4§ T_|°
Srid ML ARl ALY Sl 11010 R Al TR TR BADET dmiad ddlaRaad AT] I} < e = Gf§ #f
SrawbBbMOLEE BwSA49BERIRENICESLY wRBBBSSITALALENLG EnCEMIERCBIELEALT BwGAMMIRNELYISAF} I e Ja T f
Srinb ML AMBANIITANSIIL SWRIDDIOZO111NGE EnlIMERRADLE10ND BwiIFAGMCCIRIAL IR W OW T FooTA L
SoeBBMACE EnOlAJBAMFOELISG40 GuIRSETA1IMMSBESCAE EnRASIRAlA1SEA111A BwIBOSSSEEMIIICE: P P B % E th ; RE
SrbB LIS BwAMOSRLFLESANITA OwCIISIPO0MAALEZOD InBRNSERABLEMCHGD BnGDOTRISMEMMRIAEY 1 d P] -
SO MM GRLDMRILIACAANIMS AIMLIIIDMONEETANY ECOCCERIRA BN SnRTCEARATEE | 1 W "¢ b xdle
SobwBBbBAIIE OGRS TORBASS EnTABRAIBCYLAMILEL EnBlAABLELSCIEINLE BwBAMMSSTAMMCIEEIA U B 4 PLT L 1

Memory Tab After Core 0 App Write

AVNET ARM DS-5 Tools and Avnet ZED Series : 20

electronics |'I".'I[|'E‘[Inf_f

15. Start the Dual CPU Core 1 application running. The Memory panel blanks as the
view is automatically switched to the Core 1 configuration, and we haven’t set
any view parameters here yet. If you wished to lock a particular view to a
configuration, you may do so by selecting the drop-down list in the Linked field
at the tops of the panels. For our purposes, we will leave the panel linked, to
follow the active application.

‘G, Linked: Dual CPU Corel~
Linked

Dual CPU Corel

Cual CPU Cored
Hello World Bare Metal

e i S It

Lock View to a Debug Configuration

Pause the Dual CPU Core 1 application, and configure the Memory window in
exactly the same way as we did for the Core 0 application. You will see the view
shown below.

141 Disassembly | ‘5 Memory &2 = Modules| 5 Events| o= Outline RefresnOff v o v Tn ' ¥ 7=
&, Linked: Dual CPU Core1 -
iy & g = 0x30000 1024
S:0x0P030000 Ox2020202020202020 Ox2020202020202020 Ox2020202020202020 OX1F20202020202020
S:@xBe038020 Bx2F202F7C207(2820 Ox282F202F295F2820 @x20205FSFSFSF295F @x1F2@5FSF28205F28 (T O YA A O
5:@xBBB30048 = Bx202F2020207C2028 @x282F2F202F2F202F Ox285C285FSF202F2F @x1F202F5F2F7(287C | st N
5:8xBB830060 = Ox2F207C2020202F20 Ox2F202F2F202F2F28 OxSF2F202F202F202F Bx1F2020203(20283E VA VAV VAV B VA B B B AR
S:@xBBB30888 = BxSF2F7CSF7C2FSF2F @x2F2FSF2F2FS5F2F2F @xSF2F2FSF2F202FSF @x@B2020287CSF7C2F /_f|_|/_f/_fi_ti_7 /_17_/|_|
S:@xBPB3BAAE | BxABBEI4R1T27C4818 OxAS14R96ATE22B034 @x118085D18456516DA Ox41C229880766F381 @|r 4."pj ek] fo)A
S:8x800380C8 Bx1CB48370701C4486 OxC11F3694BE1G2948 Ox42C1586708BCC3BE @xFBSC15912383084C D.pp.. @) gP BL. .4
S:@xBPB380EE Bx21C962502(P1CAB0 @xP727728DC35@6A52 OxAGPAS418B49D3CEF @xDBCEASDALESASDAE PGP e 1T
S:@xB0038188 Bx1AAD4GEEE3861E14 Ox3D51268B8C10039ED Ox96E1G6991956C488 8x3348744946940330 8Q=..v EItH3
S:8xB0830128 BxE2730873899132ABC @x1014508755090(00 OxBBAS8502494F5600 Ox201653961C2934744 * 8.5 P...vOI DG
5:8xBPB38148 Bx8(55648470084724 Ox40840B3427602187 Ox122491(225818864 Bx@1227CBC5FS48381 *G.p.du. . !"'4 @d % & T_.|
S:8xBPB30168 Bx4ASDASROSRL132412 Ox40163C11DPEEC51e OxF41(78(76FD40663 OxA42F662040406247 5 13 < fic % .GbEE f/
STGxBPB3B158 BxJ449B681081C1512 Gx98086517A4A18319 OxCBE2189CE2616ACT BX66649982511354F2 1 e ja T f
SxBP0301A8 | OxAB43431057A05231 0Ox9300102000111854 Ox22931008AD461808 OxJ41FAGBR4ACC50141 | 1R.W.CH.T F "AL L
S:@x800301C8 Bx8142B43F@5115848 Bx2065741345085(04 6x1AS519414188A111A 6x1805456891021C92 @{P..?.B. .\.E.th q hE
S:@xBBB38LEE BxS84058EF1864137A Ox(215220B84AES20D OxB5005384854830C968 OxcDA7B28080A81481 z.d. PEX "7 BHK m
S:8x80030208 @x1D553114C4490040 8x106322B505849409 OxCBDCBA294104803E Ox447(640658A29488 §.I..1U "oy A X.d|D
5:8xB0838228 BxI6C2E4A4579DFBASS Ox743BAlBCI1838164 OxPL4485850C2E1RLE BxBABPS@7424C568E4 U yE. . d ;... D host

Memory Tab After Core 1 App Write

ARM DS-5 Tools and Avnet ZED Series : 21

m

16. You may stop and start both Core configurations independently, and run both at
the same time if you wish. Use the single-step debug controls to explore the
applications and determine how the memory writes and semaphore interaction
works.

This has been a brief introduction to the DS-5 Debug perspective and how it can
be used to independently debug applications running simultaneously on each
ARM core. More advanced topics will be covered in subsequent tutorials in this
series.

]

You can disconnect the current debug sessions - , close DS-5 and power down
the hardware.

Revision History

Date Version | Revision

23 May 13 |00 Initial Draft

20Sept 13 | 01 Release
Resources

http://www.zedboard.org

http://www.xilinx.com/zynqg

http://www.arm.com/products/tools/software-tools/ds-5/index.php

=AVNET” ARM DS-5 Tools and Avnet ZED Series : 22

