\VNET

Reach Further™

Advanced Concepts with Xilinx®
SDSoC™ — Streaming I/O

Tools: 2017.4 Vivado & SDSoC
Training Version: vl
Date: 19 April 2018

© 2018 Avnet. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Avnet is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this

feature, application, or standard, Avnet makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights
you may require for your implementation. Avnet expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to
any warranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Objectives

e Learn how to create a SDSoC platform that supports streaming input data
e Create a SDSoC application that accesses the input data stream

Overview

This lab demonstrates the steps needed to create a SDSoC platform and application that processes
streaming data received from an external source. A programmable counter located in the programmable
logic (PL) will be used to model the external source. In reality, the external source may be an analog-to-
digital converter (ADC) or some other off-chip device, but for simplicity we will model the external source
with a programmable counter. The counter is programmed over an AXI4™-Lite interface by the software
portion of our SDSoC application running in the Zyng® processing system (PS). The counter output feeds
an AXIl4-Stream data FIFO which is accessed by our SDSoC application to move data from PL to PS.

This lab is split into three experiments. In the first experiment we will develop a SDSoC platform capable
of supporting streaming data. The second experiment creates and builds the SDSoC application. The third
experiment executes the SDSoC application on the MiniZed™. The first experiment can be skipped if
desired by using the pre-built SDSoC MiniZed platform found in the supporting documents folder
accompanied with this lab.

Lab Setup
This experiment will build upon work done in “A Practical Guide to Getting Started with Xilinx SDSoC”,
which can be downloaded from . It is not necessary to

complete “A Practical Guide to Getting Started with Xilinx SDSoC”, but it is highly recommended.

Setting Up For the Lab

This document is written for use with Windows and there are references throughout to paths starting with
C:/. If you wish to complete this lab with a different operating system please convert the file paths
appropriately.

1. Install version 2017.4 of the Xilinx SDx tool suite

— 3¢ Design Tools
Software Defined Development Environment (SDx) IDE for SDSoC and SDAccel

@ Vivado

“[] s5ystem Generator for DSP

t}- Software Development Kit (SDK)
[] Model Composer

2. Become familiar with SDSoC and Vivado.

3. Create a directory on your C-drive named training. Extract the contents of the supporting
documents zip-file (support.zip) to C:/training.

4. |If not already done, copy the MiniZed board definition to your
<Xilinx SDx install directory>/Vivado/2017.4/data/boards/board_files directory. The MiniZed
board definition files can be found in the C:/training/support/board_def folder or downloaded from

5. Install a terminal program such as PuTTY or Tera Term.

Page 2

http://zedboard.org/support/trainings-and-videos
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments.html
http://zedboard.org/sites/default/files/documentations/MiniZed_Board_Definition_File_0.zip

Experiment 1. Create the Platform

The first experiment in this lab creates the MiniZed hardware platform containing the programmable counter
and AXIl4-Stream data FIFO. The programmable counter models an external data source and writes data
to the AXI4-Stream data FIFO. The AXI4-Stream data FIFO is read by the SDSoC application which will
be created in Experiment 2.

Note: A completed SDSoC platform is located in the support folder under a sub-folder named
platforms. If you wish to skip SDSoC platform generation then add the completed platform to
your repository (SDSoC GUI menu Xilinx = Add Custom Platform) and go to Experiment 2.
More detail on adding the custom platform to your repository is given in Experiment 2.

mz_stream/platform.spr - Xilinx SDx
Project Run Xilink Window Help
(A5 v Q v i BH Start/Stop Emulator

RTL Kernel Wizard...

B |l v
C:)‘ ¢ Vivado Integration >
Add Custom Platform...

SDx Examples... E
SDx Libraries...

B Launch Shell

Hardware Platform

The following steps demonstrate creation of the hardware platform definition in Vivado
1. Open Vivado 2017.4

2. Create a new project named mz_stream in C:/training/vivado_project then click on Next

¢ New Project et

Project Name
Enter a name for your project and specify a directory where the project data files will be stored. '

Projectname: mz_stream
Project location: Cufraininghvivado_project lz‘

v Create project subdirectory

Project will be created at: Cfirainingivivado_project/mz_stream

2 =
\z) = Back Next = Cancel

Figure 1 - New Vivado Project

Page 3

3. Select the RTL Project option and make sure the Do not specify sources at this time box is
checked and then click Next

¢ New Project K

Project Type
Specify the type of project to create. ‘

@ RTL Project
: You will be able lo add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

+/| Do not specify sources at this time

Postsynthesis Project: You will be able to add sources, view device resources, run design analysis, planning and
implementation.

10 Planning Project
Do not specify design sources. You will be able to view partipackage resources.

Imported Project
Create a Vivado project from a Synplify, XST or ISE Project File

Example Project
Create a new Yivado project from a predefined template.

Figure 2 - Vivado Project Type

4. Click on Boards then select the MiniZed option and click Next

¢ New Project x

Default Part
Choose a default Xilinx part or board for your project. This can be changed later, '

select {8 Parts | [Boards

v Filter! Preview

Vendor: All hd
Display Mame: | All v
Board Rev. Latest A
Reset All Filters
Search hd
Display Mame Vendor BoardRev Part
E Alpha-Data ADM-PCIE-7v3 alpha-datacom 1.0 8 xcTVREQOMTg1157-2 -~
@ Kintex-Ultrascale Alphadata board alpha-data.com 1.0 &} xcku0G0-ffva1156-2-8
‘ @ MiniZed em.avnet.com 1.0 & xc72007sclg225-1
@ Avnet UltraZed-3EG 10 Carrier Card em.avnet.com 10 &} xczu3eg-sfvaf25-1-
- e . — . . e . - . . - = mme o e ~
< »

No Board Connectors

)

Figure 3 - Part Selection

5. Click Finish on the New Project Summary window

Page 4

6. Extract the axi_counter_ip.zip file located in the support folder to your Vivado project directory

C:\training\vivado_project\mz_stream\mz_stream.ip_user_files\

In Vivado, click on Settings under PROJECT MANAGER in the Flow Navigator window

v PROJECT MANAGER

£

Seftings

7. Select IP (click on the rotated chevron symbol left of IP to expand) - Repository and add the
axi_counter_ip directory from step 6 then click OK

/’

Settings

Project Settings
General
Simulation
Elaboration
Synthesis
Implementation
Bitstream

~ P
Repository

Packager

Tool Settings
Project
IP Defaults
Source File
Display
©

IP > Repository

Add directories to the list of repositories. You may then add additional IP to a selected ‘
repository. If an IP is disabled then a tooltip will alert you to the reason.

IP Repositories

+ =-

citrainingivivado_project/mz_stream_2/mz_stream_2.ip_user_files/axi_counter_ip (Project)

Refresh All

(o | [| [

Figure 4 - Adding the IP Repository

Note: SDSoC requires all project files, including IP, to be local to the Vivado project. This is
why the AXI Counter IP was copied to the ip_user_files directory in step 6.

Note: Steps 8 through 22 demonstrate how to create the block design for the streaming 1/O
platform. The process is lengthy and somewhat cumbersome.

You can create the block design automatically by executing the create_mz_stream_bd.tcl
script from the supporting documents folder. If you use this script jump to step 23.

Page 5

8. Create an IP Integrator Block Design named mz_stream_bd by clicking on the Create Block
Design option under IP Integrator in Flow Navigator

¢ Create Block Design x

Please specify name of block design. ‘
Design name: mz_stream_bd |
Directory: @ =Local to Project= A
Specify source set: Design Sources A

P

Figure 5 - Create the Block Design

9. Add the following components to the IP Integrator (IPl) canvas
a. ZYNQT7 Processing System — quantity 1
b. Processor System Reset — quantity 3
c. Clocking Wizard — quantity 1
d. Concat — quantity 1
e. axi_counter_ip — quantity 1
f. AXI4-Stream Data FIFO — quantity 1
g. AXI SmartConnect — quantity 1

10. Click on Run Block Automation in the Designer Assistance Banner to apply MiniZed board
presets

Diagram » Address Editor X
a a H{ & Q +

/ Designer Assistance available. Run Block Automation

Figure 6 — Block Automation

Page 6

11. Click OK on the pop-up window

Automatically make connections in your design by checking the boxes ofthe blocks to connect. Select a block on the left to display its
configuration options on the right. ‘

Description

7)
M All Automation (1 out of 1 selected) This option sets the board preset on the Processing System. All current properties will be

+ 4F processing_system7_0 overwritten by the board preset. This action cannot be undone. Zynq7 block automation
applies current board preset and generates external connections for FIXED_IO, Trigger
and DDR interfaces.

MOTE: Apply Board Preset will discard existing IP configuration - please uncheck this box,
if you wish to retain previous configuration.

Instance: fprocessing_system7_0

Options
Make Interface External: FIXED_IO, DDR -
Apply Board Preset: bl
Cross Trigger In: Disable hd
Cross Trigger Out: Disable hd .

®
Figure 7 - Block Automation Pop-up

12. Double-click on the ZYNQ7 Processing System block and customize it as follows

a. We need to enable the M_AXI_GPO interface which will be used to write memory-

mapped registers within the AXI Counter IP. The M_AXI_GPO interface is enabled by
navigating to PS-PL Configuration = AXI Non Secure Enablement - GP Master AXI

Interface 2 M AXI GPO interface (shown in the figure below).

¢ Re-customize IP X
ZYNQT Processing System (5.5) ‘

© Documentation %% Presets | IP Location & Import XPS Settings

Page Navigator - PS-PL Configuration Summary Report
Zynq Block Design « O T =
PS-PL Configuration Search
Mame Select Description
Peripheral /0 Pins
> General
MIO Configuration ~ AXI Non Secure Enablement 0 ~ Enable AXI Non Secure Transaction

~ GP Master AXl Interface

Clock Configuration

> MAXI GPO interface Enables General purpose AXl master interface 0
DODR Configuration > MAX GP1interface Enables General purpose AXl master interface 1
GP Slave AX! Interface
SMC Timing Calculatio
HP Slave AXI Interface
ACP Slave Al Interface

DMA Controller

Interrupts

PS-PL Cross Trigger interface Enables PL cross trigger signals to PS and vice-versa
< >

Figure 8 — Enabling M_AXI_GPO PL Interface

Page 7

b. There is an issue with using UARTO on the MiniZed so we must disable it in order to
force UART1 to be used. To disable UARTO select Peripheral I/0O Pins and deselect
UARTO

¢ Re-customize IP X
ZYNQT Processing System (5.5) ‘

@ Documentation £ Presets IP Location &} Import XPS Settings

Page Navigator Peripheral IO Pins Summary Report

Zyna Block Design «0z 2 0

PS-PLConfiguraion ~ earch

Peripheral Ii0 Pins Bank0 LVCMOS33V v Bank1 LVCMOS33V v
Peripherals 0 (12 (8 45 8 7 881011 1213 14 15 18 17 18 18 20 21 22

IO Configuration = p— R R

Clock Configuration >

DDR Configuration

>
> | Ethemet0

SMC Timing Calculatio

>

Ethemet 1

Interrupls o useo

>/ sD0
>/ sD1
> 8PI0

> lsPI1 -

’ LEr® UARTO UARTO UARTO UAF

* o UART1 UART1 UART! UARTA UARTA [~

Figure 9 — Disabling UART 0

c. Per UG1146 we must enable fabric interrupts and connect a Concat block to the PS
interrupt port. To enable interrupts select Interrupts and enable Fabric Interrupts.

¢ Re-customize IP X
ZYNQ7 Processing System (5.5) ‘
@ Documentation ¥ Presets IP Location ¢ Import XPS Settings

Page Navigator - Interrupts Summary Report

Zynq Block Design « QT =

PS-PL Configuration Search:

Interrupt Port D Description

Peripheral IO Pins
> Fabric Interrupts Enable PL Interrupts to PS and vice versa

WIO Configuration
Clock Configuration
DDR Configuration
SMC Timing Calculatio

Interrupts

< >

Figure 10 - Fabric Interrupts

Page 8

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1146-sdsoc-platform-development.pdf

d. Next enable PL-PS Interrupt Ports by expanding Fabric Interrupts and selecting
IRQ_F2P[15:0]

¢ Re-customize IP X
ZYNQT Processing System (5.5) ‘

© Documentation £¥ Presets IP Location & Import XPS Settings

Page Navigator -1 Interrupts Summary Report
Zynq Block Design « O =T =
PS-PL Configuration Search:
Interrupt Port D Description

Peripheral /O Pins
P ~ |/ Fabric Interrupts Enable PL Interrupts to PS and vice versa

MIO Configuration ¥ PL-PS Interrupt Ports

IRQ_F2P[15:0] [91:84], [6.. Enables 16-bit shared interrupt port from the PL. MSB is assigned th.
Clock Configuration Core0_nFIQ 28 Enables fast private interrupt signal far GPUO from the PL
DDR Configuration Core0_nIRQ 3 Enables private interrupt signal for CPUQ from the PL
Core1_nFIQ 28 Enables fast private interrupt signal for CPU1 from the PL
SMC Timing Calculatio Core1_nIRQ 31 Enables private interrupt signal for CPUA from the PL
» P3-PLInterrupt Ports
Interrupts
< >
ox] [conen |
Figure 11 - IRQ_F2P[15:0]
e. Click OK

13. Double-click on the Concat block and customize it with 1 input port then click OK

¢ Re-customize IP X
Concat (2.1) P

o Documentation IP Location

Show disabled ports Component Name xlconcat_0

Number of Ports

(@) Rute) nowiatn 1 [1- 4098,

Dout Width (Auto) 1

NOTE: The In0 portis connected to the LSB bits of the output, and
the In[Mumber of Ports - 1] input port is connected to the MSB bits of the output

Figure 12 - Concat Block with 1 Input Port

Page 9

14. For our platform we are adding 3 PL clocks using the Clocking Wizard. We could use clocks
generated by the PS, but using the Clocking Wizard allows for more flexibility during routing by
Vivado. Double-click on the Clocking Wizard block and customize it with 3 output clocks

a. Click on the Output Clocks tab and set the following output clock frequencies and reset
option

i. clk_outl =50 MHz, clk_out2 =75 MHz, clk_out3 = 100 MHz

ii. Reset Type - Active Low

Re-customize IP
Clocking Wizard (5.4)

@ Documentation - IP Locasion

1P Symbol

Show disasled pods

Component Name clk_wiz_0

Output Clacks.

The phase Is calculated relatve to the acthve Input clock

OutputClock PortName | CUPNEFrea (Miz) Phase (degrees) Duty Cycle (%)
Requested Actual Requested Actual Requested Actual
_outt) 50000 0000 0000 50000 500
75000 0000 0000 50000 500
100000 0000 0000 50000 500
100000 0000 50000
100000 0000 50000
axouts 100000 0000 50000
aow7 100000 0000 50000
clk_out! =
Clockig feedback
-0 resetn clk_out2 =
5 Source
— clk_inl clk_out3 — OuputClock Sequence Number
locked == 1 * Automatic Control On-Chip
1
1
1
1
1
1
Enable Optional Inputs Outputs for MMCMPLL Reset Type

input_clk_stopped

Figure 13 - Clocking Wizard

b. Click OK

15. Double-click on the AXI SmartConnect block and customize it with 1 AXI Slave interface then
click OK. The AXI SmartConnect block is used to handle port differences between the AXI
interface on the PS and the AXI Counter IP.

Re-customize IP X

AXI SmartConnect (1.0}

[
0 Documentation ' IP Lacalicn
CompunentNiame smarconneet
1
+ 500_AX 1 v
= aclk MID_t00 4| '
a et

B

oK cancal

Figure 14 - AXI SmartConnect with 1 AXI Slave Interface

Page 10

16. Double-click on the AXI4-Stream Data FIFO and set the following parameters

FIFO Depth to 4096
Asynchronous Clocks to Yes
TDATA Width (bytes) to 4 — Note: You need to change the toggle from Auto to Manual

Click OK

¢ Re-customize IP x
AXI4-Stream Data FIFO (1.1) ‘

0 Documentation IP Location

Show disabled ports ComponentName axis_data_fifo_0

FIFO Depth 4006 ~
Enable Packet Mode No -
Asynchronous Clocks Yes A
Synchronization Stages across Cross Clock Domain Logic | 2 A
ACLKEN Conversion Mode MNone A

Signal Properties

@) TDATA Width (bytes) 512
(W) AUts) Enable TSTRE | No
(@) Auts) Enable TKEEP | No

(@) Auto) Enable TLAST No

(@) Auts”) TID Width (bits) 0

(@) Auto) TDEST widih (bits) 0

(@) Auto) TUSER Width (bits) 0

Figure 15 - AXI4-Stream Data FIFO Customization

17. We need to connect all of our components now that they are customized. Make the following
connections (components shown in bold font, ports shown in green italicized font)

a.

b.

C.

d.

xlconcat_0 dout port to processing_system7_0 IRQ_F2P port
processing_system7_0 FCLK_RESETO_N port to
i. proc_sys reset 0 ext reset in port
ii. proc_sys_reset 1 ext reset in port
iii. proc_sys_reset 2 ext reset _in port
iv. clk_wiz_0 resetn port
processing_system7_0 FCLKO port to clk_wiz_0clk in_1 port

clk_wiz_0clk out 1 portto proc_sys_reset 0 slowest sync clk port

Page 11

e.

clk_wiz_0clk out 2 portto
i. proc_sys_reset_1 slowest sync clk port
ii. processing_system7 0 M AXl GPO ACLK port
iii. smartconnect_0 aclk port
iv. axis_data fifo_0s axis_aclk port
V. axi_counter_ip_Oclkand s_axi_aclk ports
clk_wiz_0clk out 3 portto
i. proc_sys_reset_2 slowest sync_clk port
ii. axis_data fifo_0 m_axis_aclk port
clk_wiz_0 locked port to
i. proc_sys_reset_0 dcm_locked port
ii. proc_sys_reset_1 dcm_locked port
iii. proc_sys_reset 2 dcm_locked port
proc_sys_reset_1 peripheral_aresetn port to
i. axi_counter_ip rst_n and s_axi_aresetn ports
ii. axis_data fifo_0 s axis_aresetn port
iii. smartconnect_0 aresetn port

proc_sys_reset_2 peripheral_aresetn port to axis_data_fifo_0 m_axis_aresetn

Expand the S_AXIS interface on the axis_data_fifo_0 component to expose the
s_axis_tdata and s_axis_tvalid ports. Make the following connections

i. axi_counter_ip counter[31:0] port to axis_data_fifo_0 s_axis_tdata[31:0]
ii. axi_counter_ip counter_valid port to axis_data_fifo_0 s_axis_tvalid port
axi_counter_ip_0 s_axi interface to smartconnect_0 M0O_AXI interface

smartconnect_0 SO0 AXI interface to processing_system7_0 M_AXI_ GPO interface

Page 12

18. Regenerate the block design layout by clicking on C at the top of the IPI canvas. The block
diagram should look like Figure 16.

Note: the M_AXIS interface of the axis_data_fifo_0 component is left unconnected in the block
design. We will define this interface for use by the SDSoC application.

smartconnect_0
|4 soomq ME axi_counter_ip_0
% axis_data_fifo_0

W Moo i s
Fal ok ?
- . counter{31:0] ._| H= 5 axs
AXI SmartConnedt | cowtaralg » s_axis waid
s ad_ax
g ~ s_axis_weady M_axs +
s_ax_aresein
£ » s_axs_tdatal310) axis_data_coun(31:0]
proc_sys_resel_1 axi_counter_ip '—. s_axis_aresetn axis_wr_data_count[31:0]
8 m_axis_aresetn axis_rd_data_count[31:0]
skowest_sync_clk mb_reset AT
ext_reset_in bus_stuet_rese00] e
m_axs_ax
o aus_resetin pedpheral_resetj0:0] e ove et 2 R
of mb_debug_sys_rsi interconnect_aresetn(0:0] proc_sys_reset.. AXI4-Stream Data FIFO
dom_locked peripheral_aresetn[0:0] ¢ slowest_sync_clk mb_resel
Frocessor Sysiem Resel ext_reset_in bus_struct_reset[0:0]
clk_wiz_0 aux_resat_in peripheral_reset[0:0]
1 mb_debug_sys_rst interconnect_ arsetn(0:0]
Eae) t—— dem_locked vipheral_aresatn(0:0]
resetn locked processing_system7_0 L bl
kit ok ou2 Frocessor Sysiem Resel
ck_out3 ! GPI00 4
5 DoR > DOR
Clocking Wizard FIXED_IO > FIXED_IO
roc_sys_reset_0
xigoncal_0 [0 (| proc_sys_reset_
— M_AXI_GP0O_ACLK = SDIO_0 +| TrrTsTREn amen
InG[0:0] dout{0:0) IRQ_F2P[0:0] ZYNQ USBIND 0 + il ms;jym - i MS;([GO]
M_AXI_GPO — - N -~ o
Concat 7FCU7(CLK:‘ @ aux_reset_in peripheral_reset[0:0]
s = mb_debug_sys_rst interconnect_ awsetn(:0]
= dem_locked peripheral_aresetn{0:0]
FCLK_RESETO_N
Processor System Resel
ZYNQT Processing System ! " SYster

Figure 16 — Final Hardware Platform IPI Block Diagram

19. Click on Address Editor tab, if the Address Editor tab does not appear in your BLOCK
DESIGN window then Navigate to Window - Address Editor using the Vivado menu

a. Click onthe Auto Assign Address button = then OK at the Auto Assign Address pop-
up

b. Notice that an address offset of 0x43C0_0000 was set for the axi_counter_ip_0
component. If it was not set to that value you will need to change it or remember to
change the SDSoC application source code (counter control.h) to use the address

assigned by Vivado.

Diagram * | Address Editor *

Q = =
Cell Slave Interface Base Name Offset Address Range High Address

~ F processing_system7_0

~ M Data (32 address bits : 0x40(
== gyi_counter_ip_0 5_ax reg0 0x43C0_0000 6. =~ 0x43C0_FFFF

Figure 17 - Address Editor

20. Click on the Diagram tab and validate the block design by clicking on]

Page 13

21. You should get a pop-up that says “Validation Successful. There are no errors or critical

warnings in this design.” If you don’t get this message then fix the issues and revalidate. Click
OK to dismiss the pop-up.

¢ Validate Design

o Validation successful. There are no errors or critical warmnings in this design.

Figure 18 - Validation Successful

22. Save the block diagram

23. Our block design is now complete and we are ready to generate output products. In order to
proceed we need to create a HDL wrapper for the block design and set it as the top level design
file. Vivado can automatically create a wrapper and set it as the top file. In the Sources window
right-click on the mz_stream_bd design source and select Create HDL Wrapper

BLOCK DESIGN - mz_stream_bd

3
»

Sources % Design | Signals | Board ?7 00 Diagram > Address Editor
Qa = £ + & @ 6 o ¢
hd Design Sources (1)

» 40 mz_stream_bd (mz_stream_bd. bd) (9)

Constraints Source Node Properties...

v

Simulation Sources (1 Open File

Create HDL Wrapper...
View Instantiation Template
Generate Output Products...
Reset Qutput Products...

Figure 19 - Create HDL Wrapper

a. Atthe pop-up leave the Let Vivado manage wrapper and auto-update radio button
selected and click OK

¢ Create HDL Wrapper

You can either add or copy the HDL wrapper file o the project. Use copy option if
you would like to modify this file

Options

O Copy generated wrapper to allow user edits

® LetVivado manage wrapper and auto-update

P

Figure 20 - Create HDL Wrapper Dialog

Page 14

24. Next we need to define the interfaces that our SDSoC application can access. The Tcl
commands used to define these interfaces are described in detail in UG1146 if you are interested
in exploring. To save time, execute the mz_stream_pfm.tcl script from the support directory
which already defines the SDSoC interfaces.

Note: It is assumed that you have followed the naming conventions specified in this
document. If that is not the case then you will need to update the Tcl script appropriately.

In the Tcl Console execute
source C:/training/support/mz_stream_pfm.tcl

25. Save the block diagram and Run Implementation. At the pop-up click OK to launch the runs.

v IMPLEMENTATION
P Run Implementation

> OpenImplemented Design

¢ Launch Runs

Launch the selected synthesis or implementation runs. ‘

Launch directory: = &3 <Default Launch Directory=

Options
) Launch runs on local host ~ Number of jobs: | 8 ~

Generate scripts only

Donit show this dialog again

Figure 21 — Run Implementation

26. When implementation is complete open the implemented design

Implementation Completed .

0 Implementation successfully completed.

Next
(®) open Implemented Design
Generate Bitstream

View Reports

Don't show this dialeg again

Figure 22 — Open Implemented Design

Page 15

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1146-sdsoc-platform-development.pdf

27. Next we will create the Device Support Archive (DSA) which is used by the SDSoC tool to
understand the hardware platform

a. Inthe Tcl Console change directories to the Vivado project directory
cd C:/training/vivado_project/mz_stream

b. Execute
write_dsa —force mz_stream.dsa

c. Execute
validate_dsa mz_stream.dsa

28. Close the Vivado project and exit Vivado
Software Platform

The software platform definition is created automatically by SDSoC in this lab using the SDSoC “Build
software platform components” option. The SDSoC Platform section below describes how to use this
option.

SDSoC Platform

The SDSoC platform generation procedure in this experiment is similar to “A Practical Guide to Getting
Started with Xilinx SDSoC”. The only exception is that we will be using a new Device Support Archive file.

For this experiment we will create a new workspace that will contain the SDSoC platform and the SDSoC
application.

1. Launch the SDx GUI

SDx SDx IDE 20174

2. Inthe “Select a directory as workspace” dialog set the workspace to
C:\training\SDx_wksp_mz_strm and click OK

3. Close the Welcome window if it appears

4. Inthe Project Explorer pane, right-click and select New - SDx Project

New > 9 Project.
Show In Alt+Shift+W > == SDx Project..
Copy cirl=c [0 Example..
Copy Qualified Name =i Other..

T Paste Ctrl+V
Delete Delete

i Import...

&1 Export..

Refresh F5

Figure 23 — New SDx Project

Page 16

5. Select Platform Project and click Next

=~ New SDx Project

Project Type

Choose the project type to create.
(O Application Project
A user application targeting SDSoC, SDAccel or SDK flow

(O system Project
Consistent way to manage multiple applications and libraries for a system configuration

@ Platform Project
SDSoC platform created from a Device Support Archive (DSA) and required software components

Figure 24 - Platform Project

6. Select the DSA file that was generated in step 27 of the Hardware Platform section.

7. Select the Build software platform components (Beta) option and click Finish.

<~ New SDx Project O X
Platform Specification 7 4
i
Specify the DSA and platform options
Browse..

Device Support Archive (DSA): | CAtraining\wivado_project\mz_stream\mz_stream.dsa

O Import software platform components

(@ Build software platform components (Beta)

< Back Next > Cancel

@

Figure 25 — Platform Specification

Steps to Generate a Platform

1 Define System Configuration

8. In the “Platform: mz_stream” window click on

9. Fill out the dialog box with the information shown in the figure below and click OK.

<~ New System Configuration X

System Configuration

Create a new system configuration

Name: ‘ conﬁgU{

Display Name: ‘ configQ

Description:

Figure 26 - SDSoC Platform System Configuration

Page 17

10. Click on "2 Add Processor Group/Domain and enter the information shown in the figure below
then click OK

== New Domain in ‘config0d X

Domain

Create a new domain

Name: ‘ a9_standalone ‘
Display Name: ‘ a9_standalone ‘
0s: standalone

Processor: ps7_cortexa9 0

Supported Runtimes: C/C++

Description:
®

Figure 27 - SDSoC Platform Domain

11. Click @ Generate Platform anq wait for platform generation to complete then click OK to dismiss
the pop-up

< Generation completed X

‘0 Platform generation has completed for ‘'mz_stream’.
w

Figure 28 — Platform Generation Completed

12. Click # Add to Custom Repositories tg add the SDSoC platform to the platform repository for the
current workspace then click OK to dismiss the pop-up

#* QOperation completed x

‘0 Platform 'mz_stream' is added to custom repositories.
v

Figure 29 — Platform Added to Custom Repositories

Page 18

13. There is an issue with the linker script generated by SDSoC which defines a heap size that is too
large for the DDR memory on the MiniZed, so we need to update the linker script with an
acceptable heap size

a. InWindows Explorer navigate to
C:\training\SDx_wksp_mz_strm\mz_stream\export\imz_stream\sw\config0O\a9_ standalone

b. Open Iscript.ld with a text editor

% < | a9_standalone - O X
Home Share View (2]

«— v « QSDisk (C) > training > SDx_wksp_mz_strm > mz_stream > export > mz_stream > sw > config0 > a9 standalone v | Search a9_standalone P
v | SDx_wksp_mz_strm A Name - Date modified Type Size
-metadata @ Iscriptid 4/17/2018334PM LD File 3KB
ip_cache [system.mss 4/17/2018 233 PM MSS File 5KE
v mz_stream
_platform
v export
v mz_stream
hw
v sw
~ configd
a9_standalone
boot v
2 items =

Figure 30 - Linker Script in Windows Explorer
c. Search for the line containing
_HEAP_SIZE = DEFINED(_HEAP_SIZE) ? HEAP_SIZE : 0x30000000;

d. Modify the line with a heap size of 0x10000000
_HEAP_SIZE = DEFINED(_HEAP_SIZE) ? _"HEAP_SIZE : 0x10000000;

14. Save and close the linker script

15. SDSoC platform generation is complete

Page 19

Discussion: Create the Platform

In Experiment 1 we created the SDSoC platform for the MiniZed that will allow the SDSoC application to
access streaming input data. Figure 31 below shows the AXI4-Stream Data FIFO which temporarily stores
the streaming input data. In Experiment 2 we will create the SDSoC application which will connect to the
FIFO master AXI4-Stream interface to read the data from the input stream.

|_ ——— =g
H ct 0
p smariconnecl.) . 0 axis_data_fifo_0 I I
- axi_counter_i
5+ so0_ax .X. . adcoumerlp.B E’+ o Axs I |
b ack W moo_axi 4 | i 57
e u u - *i |t o md P s axis_tvalid - SDSOC I
aresetn e ck {er{31:0) = \data[31.0] M_AXIS + [1 . .
— counter{31: s_axis_tdal
b e / rsin y | - ais_data_counl[31:0] Application |
AXl SmartConnect counter_valid s_axis_aresetn . |
s_axi_aclk . axis_wr_data_count[31.0] I
I—a m_axis_aresetn .
— s_axi_aresetn) axis_rd_data_count[31:0] I
L J s_axis_aclk I
axi_counter_ip m_asds_aclk | I,
" J
AXI4-Stream Data FIFO

Figure 31 — SDSoC Platform and Application Connection

During platform creation we added a Clocking Wizard IP block instead of enabling more output clocks from
the PS. There can be issues with closing timing when all clocks are sourced from the PS. In order to
improve our timing results the Clocking Wizard was added which puts PL clock generation in the PL rather
than the PS, and gives the tool more flexibility when routing the design.

The programmable counter operates at a maximum sample rate of 75 MHz. The highest clock available in
the platform is 100 MHz which we will use in our application for the data movement clock. We want our
data movement clock to be higher than the input data rate in order to be able to read the FIFO fast enough
to prevent overflows.

The programming interface for the counter is an AXI4-Lite memory-mapped interface that is defined as part
of the hardware platform. This method of platform definition/connection follows the traditional Vivado/SDK
development flow. SDSoC supports writing data to memory-mapped addresses in the same way that is
supported by SDK. This is very handy if we have a previous application that used the traditional flow, but
want to update the application to use SDSoC. In that case we may not need to update the hardware or
software platforms, we just need to create the SDSoC platform by following the steps outlined in the SDSoC
Platform section of Experiment 1.

In step 24 of Experiment 1 we executed the mz_stream_pfm.tcl script which defines the platform interfaces
available to the SDSoC application. The Tcl script defines PL clocks as well as AXI and interrupt ports that
SDSoC uses to move data between PS and PL. A portion of the Tcl script is shown in Figure 32 below.
The script excerpt shows the AXI4-Stream master port exported for use with SDSoC. It can be seen that
the “M_AXIS” port of type “M_AXIS” from the axis_data_fifo_0 component is being exported for use by the
SDSoC application. We will use the sys_port pragma in our SDSoC application to directly connect to the
M_AXIS port of the axis_data_fifo_0 component.

62 $### Define the platform interface to the AXI4-Stream Data FIFO
63 set_property PFM.AXIS PCRT | \
-:'—.L M AXIS {type "M AWIS"]} \

} [get_bd cells faxis_data_ fifo 0]

Figure 32 — AXI4-Stream Data FIFO Port Definition

Page 20

Experiment 2. Create the Application

In this experiment we will create the SDSoC application which programs a PL counter by writing memory-
mapped registers over an AXI4-Lite interface. The output of the counter feeds an AXI4-Stream Data FIFO
which the SDSoC application accesses to get data from the PL.

1. If you skipped Experiment 1 perform a-c below. Proceed to step 2 below if you completed
Experiment 1.

a. Launch the SDx GUI

SDx SDx IDE 20174

b. Inthe “Select a directory as workspace” dialog set the workspace to
C:\training\SDx_wksp_mz_strm and click OK

c. Close the Welcome window if it appears

d. Inthe SDx GUI menu navigate to Xilinx - Add Custom Platform

=~ SDx_wksp_mz_strm - SDx - Xilinx SDx

File Edit Navigate Search Project Run Xilinx Window Help

i | S~ | ~its v Q! RTL Kernel Wizard...
¢ Vivado Integration

>
Slidaciagiec X Add Custom Platform...

SDx Examples...
SDx Libraries...

B3 Launch Shell

Figure 33 — Add Custom Platform

e. Click onthe Add Custom Platform button and then browse to
C:\training\support\platforms\mz_stream and click OK

Platform Repositories

@ Add or Remove Custom Platform Repositories.

Manage (Custom)| SDSoc| SDx F L
Specify Custom Platform Location (Directory) X
Name
:‘}- ~
SDx_wksp_mz_strm
v support
board_def
v platforms
Add Custom Platform... v mz_stream

| hw

f:’) Cancel [sw
source ¥

Folder: | Mz_stream
Make New Folder Cancel

Figure 34 — Add Custom Platform

Page 21

f. Finally, click OK on the Platform Repositories pop-up. You should see the mz_stream
platform listed as shown in the figure below.

=~ Hardware Platform Repositories

Platform Repositories

® Add or Remove Custom Platform Repositories.

Manage (Custom)| SDSoc | SDx

Name
B mz_stream C\training\support\platforms\mz_stream

Add Custom Platform...

Figure 35 — mz_stream Platform Added to Repository

2. Create the application project
a. Inthe Project Explorer pane, right-click and select New = SDx Project

> 1 Project..

New
Show In Alt+Shift+W > (=7 SDx Project...
Copy cul+c I BExample..
Copy Qualified Name =i Other.

T Paste Ctrl+V
Delete Delete

£ Import..

ia Export.
Refresh F5

Figure 36 - New SDx Project

b. Select Application Project and click Next

<= New SDx Project

Project Type

Choose the project type to create.

@ Application Project
A user application targeting SDSoC, SDAccel or SDK flow

Figure 37 — Application Project

Page 22

c. For the project name use mz_stream_app and click Next

=~ Mew SDx Project O X

Create a New SDx Project 7 4

Enter a name for your SDx project.

Project name: mz_stream_app|

Use default location

Location: | C\training\SDx_wksp_mz_strm\mz_stream_app Browse...

< Back Finish Cancel

Figure 38 — MiniZed Streaming I/O Application

d. Select the mz_stream [custom] platform and click Next

~~ New SDx Project] X
Platform -~
The platform defines the hardware that will execute your application.
Platforms (6) Filter
Name Board Family Part Version Vendor Flow Location
@ microzed microzed zynq xc7z010 1.0 xilinxcom SDSoC $XILINX_SDX\platforms\microzed\microzed.xpfm
mz_stream [custom] mz_stream zynq Xxc7z007s 1.0 avnetcom SDSoC Ci\training\SDx_wksp_mz_strm\mz_stream\export\rr
@ zc702 zc702 zynq xc7z020 1.0 xilinxcom SDSoC $XILINX_SDX\platforms\zc702\zc702.xpfm
@ zc706 zc706 zynq xc7z045 1.0 xilinxcom SDSoC $XILINX_SDX\platforms\zc706\zc706.xpfm
& zcu102 zcu102 zynquplus xczu9eg 1.0 xilinxcom SDSoC $XILINX_SDX\platforms\zcu102\zcu102.xpfm
E zed zed zynq xc7z020 1.0 xilinxcom SDSoC $XILINX_SDX\platforms\zed\zed.xpfm
< >
Add Custom Platform...| | Manage Repositories.. | Add Devices/Platforms...
Description
mz_stream
Repository: C:/training/SDx_wksp_mz_strm/mz_stream/export/mz_stream
@' < Back Finish Cancel

Figure 39 — Platform Selection

Page 23

e. On the System configuration window click Next

== New SDx Project

System configuration 7

Provide the system configuration and software details for your project

Software Platform
System configuration: | configD

Runtime: C/C++

Domain

Domain: a9 standalone
CPU: ps7_cortexad_0
OS: standalone

Additional Settings

@' < Back Finish Cancel

Figure 40 — System Configuration

f. Inthe Templates window select Empty Application and click Finish

<~ New SDx Project

Templates 7 4

Select a template to create your project.

Available Templates:

Empty Application Creates a new Empty application

SDx Examples... | SDx Libraries...

@ < Back Next = Cancel

Figure 41 — Empty Application

Page 24

3. Import the project source code
a. Expand the project in the Project Explorer pane

b. Right-click on the src directory and select Import

= mz_stream
v 2% mz_stream_app

=) Includes

= Src

% proje New ’
Go Into

Open in New Window

H Delete Delete
Source >
Move...

Import...
Export...

E B

Refresh F5
Resource Configurations >

Compare With >
Restore from Local History...

Team >

Properties Alt+Enter

Figure 42 — Import Source Code

c. Inthe import window expand the General category and select File System then click
Next

=* Import O X

Select \

Import resources from the local file system into an existing project.

Select an import wizard:

type filter text

~ (= General ~

JE Archive File
= Existing Projects into Workspace
. File System
[Preferences
. Projects from Folder or Archive

= Git

(= Remote Systems

= Run/Debug v

@' < Back Finish Cancel

Figure 43 — Import from File System

Page 25

d. Browse to the C:\training\support\source directory and Select All source files for
import then click Finish

<= |Import O X
File system B
Import resources from the local file system. -
From directory: ‘ Ci\training\support\source V‘ Browse...
[w]i= source [& counter_contral.h
[€ main.cpp

€l mz_axi_stream.cpp
[mz_header.h
[€ read_stream.cpp

Filter Types... Select All Deselect All
Into folder: ‘ mz_stream_app/src Browse...
Options

[] Overwrite existing resources without warning
[[] Create top-level folder

Advanced > >

lf?:' < Back Next > Cancel

Figure 44 - File System Browser

4. Select the function for Hardware Acceleration that will move data between the PL FIFO buffer and
the PS (Note: we aren’t really hardware accelerating this function, we are just moving it to
programmable logic to act as a shim between the PL FIFO and the Zyng PS)

a. Inthe Hardware Functions pane click on the “ icon

b. After the source code is indexed a list of functions will be available for acceleration —
Choose the read_stream function and click OK

=~ Add Hardware Functions O X

Select an item to open (? = any character, * = any string): -

+ More Options

Matching items: Cache refresh (100%)
o |f_check_buffer(uint32_t * * uint32_t uint32_t, uint32_t, stats_t *)
® |f_print_debug{uint32_t * * stats_t, uint32_t, uint32_t, uint32_t)
® main()
@ mz_axi_stream()
e read stream(uint32 t* uint32 t uint32_t, uint32 t *) - /mz stream_app/src/read_stream.cpp

read_stream(uint32 _t * uint32_t, uint32 t, uint32 t *) - /mz_stream_app/src/read_stream.cpp

Figure 45 — Application Function List

Page 26

c. Notice that the read_stream function now shows up in the Hardware Functions pane

Hardware Functions

MName Clock Fregquency (MHz) Path
read_stream 100.00 src/read_stream.cpp

Figure 46 - Hardware Functions

d. The maximum counter rate for the programmable PL counter is 75 MHz. We want to
select accelerator and data motion network clock frequencies of 100 MHz to ensure
that we are emptying the PL FIFO as fast as possible. These values should be default
(defined in the mz_stream_pfm.tcl script).

Note: The master side of the AXI-Stream FIFO in the HW platform was connected to the 100
MHz clock. Choosing a data mover clock other than 100 MHz will result in an error.

5. In order to speed up the build process we will enable parallel build capabilities
a. Right-click on the project folder and select Properties

~ £ mz_stream_app
il Includes W=z
= src Go Into
R projectsdx Open in New Window
® Delete Delete
Source ’
Mave.
s Import...
Export...

EE

Build Project

Clean Project

Refresh F5
Close Project

Close Unrelated Projects

Build Configurations

Run As

Debug As

Compare With

Restore from Local History...

C/C++ Build Settings
Show in Reports View
Team >

Configure >

Properties Alt+Enter

Figure 47 — Project Properties

b. Click on the C/C++ Build category

Page 27

c. Select the Behavior tab, select Enable parallel build and click OK

<= Properties for mz_stream_app O X
type filter text C/C++ Build (=14 v v
Resource
Builders
C/C++ Build Configuration: |Debug [Active] ~ | Manage Configurations...

C/C++ General

Project References — :
Run/Debug Settings E/ Builder Settings © Behavior 4 Refresh Policy

Build settings
Stop on first build error Enable parallel build
(@ Use optimal jobs (8)
(O Use parallel jobs: 8 =

(O Use unlimited jobs

Workbench Build Behavior
Workbench build type: Make build target:

Build on resource save (Auto build) | all ‘ Variables...

Mote: See Workbench automatic build preference

[Build (incremental build) [all | | Variables..
Clean | clean ‘ Variables...
Restore Defaults Apply

Figure 48 - C/C++ Build Settings

6. Build the application
a. Right-click on the project folder and select Build Project

~ % mz_stream app
[Include New >
(= src Go Into
K project Open in New Window
Delete Delete
Source >
Move..
Import...
Export...

Build Project

E

Figure 49 — Build Project

b. The build process will start and you may see a critical warning stating “failed DSA
integrity check: digest mismatch.” This warning indicates that the DSA has been
modified outside of the Vivado tool suite. We can ignore this warning because the DSA
was not modified outside of Vivado and does not impact this lab.

Page 28

7. When the build completes a directory named sd_card will be created under the Debug folder in
the project (assuming Debug build is selected instead of Release). The sd_card directory
contains the necessary files for running the application on the MiniZed.

v [mz_stream_app

5 Binaries

L Archives

kY Includes

v = Debug

= _sds
(= sd_card
= src
#¥ mz_stream_app.elf - [arm/le]
@ makefile
=| mz_stream_app.elf.bit
@ objects.mk
& sources.mk

= sIC

A project.sdx

Figure 50 — SD Card Directory Containing MiniZed Boot Files

8. Creation of the SDSoC application is complete

9. Experiment 3 will cover programming the MiniZed and running the application.

Page 29

Discussion: Create the Application

In Experiment 2 we created and built the SDSoC application which configures the programmable counter
and reads data from an AXI4-Stream FIFO in the hardware platform. Figure 51 below shows a block
diagram representation of the application mapped to PS and PL.

Processing System Programmable Logic Diagram Key

Get ‘ Data Movement

Counter
— Program Flow

Parameters

PL Platform
Component

Disable
Counter

SDSoC Application
Function

AXI4-Lite

Clear
Counter

PL Programmable

Counter

AXI4-Stream

Read
PL FIFO AXI-Stream FIFO

Buffered
Counter
Data

Memory-mapped
control interface

Counter
Qutput
Data

Configure
Counter

Figure 51 — SDSoC Application

The SDSoC application starts by querying the user for counter parameters (initial value, increment, and
update rate). Next the application programs and enables the counter using an AXI4-Lite memory-mapped
control interface. Counter control functions are located in the counter_control.h file as a class of functions
which write to memory-mapped registers using the Xil_Out32 driver. Another method for writing to the
memory-mapped registers would be to use a pointer to the counter’s memory-mapped address space.
These methods are valid for bare-metal applications only. For Linux applications the UIO device driver
must be used with an appropriate device tree entry. Once the counter is configured and enabled the SDSoC
application calls the read_stream() function which corresponds to the “Read PL FIFO” operation shown in
Figure 51 above. The read _stream() function reads data from the AXI4-Stream data FIFO in the PL and
moves it to memory allocated within DDR for the PS part of the SDSoC application to use. Finally, the
counter data located in DDR is checked for correctness and the test completes.

Figure 51 above shows a simplified view of the system. For a detailed view open the Vivado project located
in C:\training\SDx_wksp_mz_strm\mz_stream_app\Debug_sds\pO_vpl\ipi\syn. Figure 52 below shows
the full system after the SDSoC application has been mapped to PS and PL. The details of the IPI block
diagram are difficult to see in Figure 52, but we can see a Vivado HLS component located in the top right
of the diagram which corresponds to the read_stream function. The remainder of the additional blocks,
when compared to Figure 16, are to handle the data movement between the PS and PL.

Page 30

Figure 52 - Vivado IPI Block Diagram after SDSoC Application Partitioning

Our SDSoC application connects to the AXI4-Stream Data FIFO through use of the sys_port pragma. The
figure below shows use of the pragma which is applied to the read_stream() function. This pragma informs
the SDSoC compiler that function argument p_stream (p_ is handy nomenclature to indicate a variable is a
port) should directly connect to the M_AXIS port of the PL FIFO. The tag “axis_data_fifo_0_M_AXIS”
defines the system port to bind argument p_stream to and is comprised of the AXI4-Stream Data FIFO
component name (axi_data_fifo_0) and the component port (M_AXIS). This information was defined in our
mz_stream_pfm.tcl script (Figure 32). The additional pragmas shown in Figure 53 inform the SDSoC
compiler how much data to move between the PL and PS as well as the data access pattern. See UG1253
for a detailed explanation of SDSoC pragmas.

mz_header.h

fpragma SDS data sys port(p stresam:axis data fifo 0 M AXTS)
fpragma SDS data copy(p_buffer[0:BUFFER DEPTH] |

fpragma SDS data copy| p_stream[0:BUFFER DEPTH])

fpragma SDS data access pattern(p_buffer:SEQUENTIAL)
fpragma SDS data access pattern(p_stream:SEQUENTIAL)

: void read stream(uint32_t ‘p_stream,
uint32_t p_init_value,
uint32_t p_flush,
uint32_t *p_buffer);

Figure 53 — SDSoC Pragmas for Function read_stream()

Figure 54 shows code fragments of read_stream.cpp which demonstrate reading data from the PL FIFO
(line 98), copying the stream data to a local PL memory (line 98), and writing the contents of local PL
memory to the PS (lines 125 — 130).

read stream.cpp

void read stream(uint32_t *p_ stream,
uint32_t p_init value,
uint32_t p_flush,
}: uint32 t *p buffer)
54 E {

55| uint32_t 1 buffer [BUFFER DEPTH]; /* Local buffer for storing data */
86 for (int i = 0; i < Z2*BUFFER _DEPTH; i++)
{
58 1 buffer[c] = *p_stream;
=L ct++;
120 f }
for (int i = 0; i < BUFFER DEPTH; i++)

{
fpragma HLS pipeline

fpragma HLS loop tripcount max=409%6
p_buffer[i] = 1 buffer[i];
}

Figure 54 — Function read_stream Code Fragments

Page 31

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1253-sdx-pragma-reference.pdf

Our application copies streaming data to a local PL memory (I_buffer) before transferring to the PS. We
could modify the application to remove the local PL buffer as shown in the example code of Figure 55.
Figure 55 also shows an averaging operation which is computed over 8 input samples and demonstrates
how a function can operate on streaming data in the PL before being transferred to the PS.

1H([/*
ek

2 average datal()
5 | e

- 8D3oC hardware function that connec to AXI4-Stream

s

data FIFO and averages data in P ore making it

g | [** available to the

*

Ps

fpragma
fpragma
fpragma
fpragma
fpragma

sSDs
sSDS
sSDS
s5D8
SDs

data
data
data
data
data

sys_port(p_stream:axis_data_fifo_0 M AXIS)
copy(p_buffer[0:BUFFER DEPTH])

copy (p_stream[0:BUFFER_DEPTH/8])
access_pattern(p buffer:SEQUENTIAL)
access_pattern(p stream:SEQUENTIAL)

void average data{ int *p stream,
int *p buffer)
13H|{

14 int ¢

Ui

15 int sum

1 for (int 1 = i
184 {

15 /* Read and sum input stream */

1; <= BUFFER_DEPTH; i++)

20 sum += (*p stream);

/* Write data
23 if ((1 % 8)
24 {

25 p buffer(c]
26 ct+;

to PS memory svery 8

= (sum >> 3); // divide by 8 to get average

27 sum = 0;
28 | 1

29 - }

30 S|}

Figure 55 — Example Code

The read_stream.cpp file also contains logic to flush the PL FIFO (shown in Figure 56 below). The
flushing logic works by searching for the first expected sample value in the stream. All samples found
prior to this value are discarded. Flushing is performed between iterations of the while-loop in
mz_axi_stream() so that we are not analyzing stale data.

read stream.cpp
void read stream(uint32 t *p stream,
€ uint32 t p init value,
7 uint32 t p flush,
58 uint32 t *p buffer)
55 {
96 | if (1_flush == 0)
97 H {
100 }
101 else
_.LE {
103 if (init_ found)
104H {
05 1 buffer[c] = *p stream;
106 - B
107 - 1
108 else
109H {
) temp = *p_stream;
112 if (temp == 1_init_valus)
113H {
) init_found = true;
1 buffer[c] = temp;
crt;
117 }
g }
o }

Figure 56 — PL FIFO Flush Logic

Page 32

The AXI4-Stream data FIFO that we inserted in the PL during hardware platform creation had a depth of
4,096. The data movement framework provided by the SDSoC compiler adds an additional 1K buffer
which must also be cleared before starting a new test. Thus, to clear the data path of old data we first
read 4,096 samples from the PL FIFO (normal read shown in Figure 57 below) followed by a read to flush
the remaining 1K samples in the data path (flushing read shown in Figure 58 below).

mz_axi_stream.cpp
ir EhRi1s 15 not the '___L 5t Cime We V& run the CEST TNneEn the PL buffer needs
flushed of old data.
if (!first_rzun)
{
* buffer should be full, perform read to clear */f
cout " 111 endl;
flush flag = 1;
read stream(input_stream, init_value, 0, ps buffer[0]);

Figure 57 - Normal Read to Clear 4,096 Samples

mz_axi_stream.cpp

;o
** Read the input data stream and copy to buffers allocated in DDR memory
& f

cycles = sds_clock_counter();

read stream(input stream, init value, flush flag, ps _buffer[0]);

Figure 58 - Flushing Read to Clear 1K Samples from Data Movement Framework
(flush_flag = 1)

Page 33

Experiment 3. Test the Application
In this experiment we will program the MiniZed with the application built during Experiment 2. The following
steps cover programming the MiniZed and executing the application.

Connect the Hardware

1. First configure the boot jumper. You can select between FLASH and JTAG booting. We want to
ensure switch 1 is set towards the F or PS_Button.

a. Note: From the Factory the switch’s protective film should be removed and already set to
F. If it is not, the switch will look similar to Figure 59.

1 & iﬂ
F <BOOT> J

Figure 59 - Untouched Boot Switch

b. If your MiniZed boot configuration switch is similar to the above, remove the protective film
and slide switch 1 (indicated by the silkscreen DASH above the F) to be toggled to FLASH
Booting (F).
2. Next plug the MiniZed into your PC in order to register the board with a COM port

a. Note: Windows 10 has been known to create two COM ports when plugging the MiniZed
into the PC.

b. With a factory fresh board, open two instances of your terminal program (PuTTY or Tera
Term), one for each COM port; 8,N,1,115200

c. Reboot your MiniZed using the Reset button

d. The terminal window that shows text output from the MiniZed is connected to the COM port
of interest. Close the other terminal window.

Page 34

Program the MiniZed

1. From the SDx GUI launch a shell window
a. Under the Xilinx menu in SDx click on Launch Shell

Xilime Window Help
4+ B Start/Stop Emulator

Add Custom Platform...

SDx Examples...

¢ Vivado Integration >|
SDx Libraries... |

1 Launch Shell

Figure 60 — Launch SDx Shell

b. Change directories to your workspace (C:\training\SDx_wksp_mz_strm) if not already
there
i. cd C:\training\SDx_wksp_mz_strm

2. From the command prompt execute the following to program the MiniZed
a. If you completed Experiment 1 use:

program_flash —f mz_stream_app\Debug\sd_card\BOOT.BIN —fsbl
mz_stream\export\mz_stream\sw\configO\boot\fsbl.elf —flash_type qspi_single

b. If you skipped Experiment 1 use:

program_flash —-f mz_stream_app\Debug\sd_card\BOOT.BIN —fsbl
C:\training\support\platforms\mz_stream\sw\configO\boot\fsbl.elf —flash_type
gspi_single

3. After programming completes reset the MiniZed by pressing and releasing the reset button
near the MiniZzed PMOD connectors

4. You should see a prompt from the MiniZed in your terminal window asking for input. Try the
following values
a. Initial counter value =0
b. Counter increment value = 1
c. Counter update rate = 2

Page 35

5. You should see the following output in your terminal window

¥ COM4 - Tera Term VT

File Edit Setup Control Window Help
[Please select the initial counter value between B and 2147483647

Please select a counter increment value bhetween 1 and 1823

P gelect a counter update rate between 1 and 1023
1 = 7?5 MHz update, 2 = 37.5 MHz wpdate, ... , 1823 = 73.314 KHz update

[Disabling Counter

learing Counter

onf iguring Counter
[Enabling Counter

1t took 588_75? microseconds to read 20488 samples
here were B errors detected in the buffer.

lJould you like to run a new test [y or nl?

Figure 61 — First Program Execution Output

6. The program halts and asks if you would like to run again. Type y and press Enter on your

keyboard.

7. Repeat the test with a counter update rate of 1 (75 MHz)

a. Notice how errors are detected in the last buffer(s). This indicates that we are not able to

empty the PL buffer fast enough to support the 75 MHz sample rate
b. This issue will be addressed in an additional lab

Would you like to run a new test [y or nl?

L3

Elease select the initial counter value hetween B and 2147483647
Please select a counter increment value hetween 1 and 16823

iL

Please select a counter update rate between 1 and 1823
1 =75 MHz update, 2 = 37.5 MHz wpdate, 1823 = 73.314 KHz update

Disabhling Counter

Clearing Counter

GConf iguring Counter

Flushing buffer

Enabling Counter

It took 438.222 microseconds to read 20488 samples
There were 2 errors detected in the bhuffer.

~ B

a
4895
1
4896
4895
a

Increment
Buffer depth
Expected last
Error count
Buffer 1:
Firs
Last
Increment
Buffer depth
Expected last sample
Error count

4876
8191
1

4896
8191
a

8192
12287
1

m
Buffer depth
Expected last sample

4896
12287
a

12288
16911
Increment 1
Buffer depth
Expected last szample
Error count
Buffer 4:
Firs
Last
Increment
Buffer depth
Expected last sample
Error count

4076
16383
1

16912
23298

1
4096
21867
1

Mould you like to run a new test [y or nl?

Figure 62 — Program Output with 75 MHz Counter Update Rate

8. To exit the program type n at the prompt and then press Enter on your keyboard

Page 36

Discussion: Test the Application

In Experiment 3 we tested the SDSoC application on the MiniZed platform. We noticed that errors were
detected in the DDR buffers when a sample rate of 75 MHz was selected. This indicates that we are unable
to read from the PL FIFO fast enough to prevent an overflow. This was by design to set up for an additional
lab titled “Advanced Concepts with Xilinx SDSoC — Asynchronous Accelerators” where we will look at
running our PL accelerators asynchronously to reduce the function call overhead.

Conclusion

This lab covered creating a SDSoC platform to support streaming input data as well as accessing the
streaming data from a SDSoC application running a standalone operating system. The streaming input
data was modeled with a programmable counter residing in the PL that is configured using an AXI4-Lite
memory-mapped interface. The output of the PL counter filled an AXI4-Stream data FIFO which our SDSoC
application was directly connected to move streaming data from PL to DDR. Our SDSoC application
running on the PS then read the DDR data and checked it for correctness.

After completing this lab you should be able to develop your own streaming platform for use with SDSoC!

Page 37

Appendix A: Getting Support
Avnet Support

e Technical support is offered online through the minized.org website support
forums. MiniZed users are encouraged to participate in the forums and

offer help to others when possible. @

e To access the most current collateral for the MiniZed, visit the community
support page (www.minized.org/content/support) and click one of the icons
shown below: SLIEIm e

Documentation Reference Designs
Tutorials

o MiniZed Documentation
http://minized.org/support/documentation/18891

o MiniZed Reference Designs
http://minized.org/support/design/18891/146

Page 38

http://www.minized.org/
http://www.minized.org/content/support
http://minized.org/support/documentation/18891
http://minized.org/support/design/18891/146

Xilinx Support

The following technical support options are available to Xilinx customers:

Global Phone Number

Region

North America

Europe, Middle East
and Africa

China

Taiwan

Hong Kong

* Support hours listed apply for both standard and daylight savings (summer) time. Please check

Language

EN

EN, DE, FR

CH (Mandarin),
EN

CH (Mandarin),
EN

CH (Mandarin),
EN

Technical information is available online 24 hours a day from the Support website

Phone**

1 800-255-7778 or +1 408-
879-5199

00 800-5152-5152 or +353
1-461-5700

+86 800 988 0218
+86 400 880 0218 (Mobile
Phone)

+886 2-8176-1060

+852 3187-3855

Technical Support staff are available to respond to your questions in the Community Forums

Individual assistance from Xilinx Technical Support may be available through Service Portal
Phone support is only available with an active open case number

Support Hours*

M-F 7:00 -17:00
PST

M-F 8:00 -17:00
GMT

M-F* 9:00 -18:00
CST

M-F 9:00 -18:00
CST

M-F 9:00 -18:00
CST

the Technical Support Holiday Calendar for support availability during holidays in your region.

** (00 800-5152-5152 is a international free phone (toll free) number available in the following countries:
Austria, Belgium, Denmark, Finland, France, Germany, Ireland Israel, Italy, Luxembourg, Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, and United Kingdom. All other countries must use

+353 1-461-5700.

** For the numbers listed, '+' represents the International Direct Dialing (IDD) prefix of the country from
which you are calling. Please consult your local telephone service provider for more information on

specific IDD instructions.

Page 39

https://www.xilinx.com/support.html
http://forums.xilinx.com/
https://www.xilinx.com/support/service-portal.html
https://www.xilinx.com/support/service-portal/techsupport_calendar.html

Revision History

Date

Version

Revision

4/19/2018

1

Initial release

Page 40

	Objectives
	 Learn how to create a SDSoC platform that supports streaming input data
	 Create a SDSoC application that accesses the input data stream

	Overview
	Lab Setup
	Setting Up For the Lab
	Experiment 1: Create the Platform
	Discussion: Create the Platform
	Experiment 2: Create the Application
	Discussion: Create the Application
	Experiment 3: Test the Application
	Discussion: Test the Application
	Conclusion
	Appendix A: Getting Support
	Avnet Support
	Xilinx Support
	Global Phone Number

	Revision History

