

© 2018 Avnet. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Avnet is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this
feature, application, or standard, Avnet makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights
you may require for your implementation. Avnet expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to
any warranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Advanced Concepts with Xilinx®
SDSoCTM – Streaming I/O

Tools: 2017.4 Vivado & SDSoC

Training Version: v1

Date: 19 April 2018

Page 2

Objectives
 Learn how to create a SDSoC platform that supports streaming input data

 Create a SDSoC application that accesses the input data stream

Overview
This lab demonstrates the steps needed to create a SDSoC platform and application that processes
streaming data received from an external source. A programmable counter located in the programmable
logic (PL) will be used to model the external source. In reality, the external source may be an analog-to-
digital converter (ADC) or some other off-chip device, but for simplicity we will model the external source
with a programmable counter. The counter is programmed over an AXI4TM-Lite interface by the software
portion of our SDSoC application running in the Zynq® processing system (PS). The counter output feeds
an AXI4-Stream data FIFO which is accessed by our SDSoC application to move data from PL to PS.

This lab is split into three experiments. In the first experiment we will develop a SDSoC platform capable
of supporting streaming data. The second experiment creates and builds the SDSoC application. The third
experiment executes the SDSoC application on the MiniZedTM. The first experiment can be skipped if
desired by using the pre-built SDSoC MiniZed platform found in the supporting documents folder
accompanied with this lab.

Lab Setup
This experiment will build upon work done in “A Practical Guide to Getting Started with Xilinx SDSoC”,
which can be downloaded from http://zedboard.org/support/trainings-and-videos. It is not necessary to
complete “A Practical Guide to Getting Started with Xilinx SDSoC”, but it is highly recommended.

Setting Up For the Lab
This document is written for use with Windows and there are references throughout to paths starting with
C:/. If you wish to complete this lab with a different operating system please convert the file paths
appropriately.

1. Install version 2017.4 of the Xilinx SDx tool suite

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-
development-environments.html

2. Become familiar with SDSoC and Vivado.

3. Create a directory on your C-drive named training. Extract the contents of the supporting
documents zip-file (support.zip) to C:/training.

4. If not already done, copy the MiniZed board definition to your
<Xilinx SDx install directory>/Vivado/2017.4/data/boards/board_files directory. The MiniZed
board definition files can be found in the C:/training/support/board_def folder or downloaded from
http://zedboard.org/sites/default/files/documentations/MiniZed_Board_Definition_File_0.zip.

5. Install a terminal program such as PuTTY or Tera Term.

http://zedboard.org/support/trainings-and-videos
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments.html
http://zedboard.org/sites/default/files/documentations/MiniZed_Board_Definition_File_0.zip

Page 3

Experiment 1: Create the Platform
The first experiment in this lab creates the MiniZed hardware platform containing the programmable counter

and AXI4-Stream data FIFO. The programmable counter models an external data source and writes data

to the AXI4-Stream data FIFO. The AXI4-Stream data FIFO is read by the SDSoC application which will

be created in Experiment 2.

Hardware Platform

The following steps demonstrate creation of the hardware platform definition in Vivado

1. Open Vivado 2017.4

2. Create a new project named mz_stream in C:/training/vivado_project then click on Next

Figure 1 - New Vivado Project

Note: A completed SDSoC platform is located in the support folder under a sub-folder named

platforms. If you wish to skip SDSoC platform generation then add the completed platform to

your repository (SDSoC GUI menu Xilinx  Add Custom Platform) and go to Experiment 2.

More detail on adding the custom platform to your repository is given in Experiment 2.

Page 4

3. Select the RTL Project option and make sure the Do not specify sources at this time box is

checked and then click Next

Figure 2 - Vivado Project Type

4. Click on Boards then select the MiniZed option and click Next

Figure 3 - Part Selection

5. Click Finish on the New Project Summary window

Page 5

6. Extract the axi_counter_ip.zip file located in the support folder to your Vivado project directory

C:\training\vivado_project\mz_stream\mz_stream.ip_user_files\

In Vivado, click on Settings under PROJECT MANAGER in the Flow Navigator window

7. Select IP (click on the rotated chevron symbol left of IP to expand)  Repository and add the

axi_counter_ip directory from step 6 then click OK

Figure 4 - Adding the IP Repository

Note: SDSoC requires all project files, including IP, to be local to the Vivado project. This is
why the AXI Counter IP was copied to the ip_user_files directory in step 6.

Note: Steps 8 through 22 demonstrate how to create the block design for the streaming I/O

platform. The process is lengthy and somewhat cumbersome.

You can create the block design automatically by executing the create_mz_stream_bd.tcl

script from the supporting documents folder. If you use this script jump to step 23.

Page 6

8. Create an IP Integrator Block Design named mz_stream_bd by clicking on the Create Block

Design option under IP Integrator in Flow Navigator

Figure 5 - Create the Block Design

9. Add the following components to the IP Integrator (IPI) canvas

a. ZYNQ7 Processing System – quantity 1

b. Processor System Reset – quantity 3

c. Clocking Wizard – quantity 1

d. Concat – quantity 1

e. axi_counter_ip – quantity 1

f. AXI4-Stream Data FIFO – quantity 1

g. AXI SmartConnect – quantity 1

10. Click on Run Block Automation in the Designer Assistance Banner to apply MiniZed board

presets

Figure 6 – Block Automation

Page 7

11. Click OK on the pop-up window

Figure 7 - Block Automation Pop-up

12. Double-click on the ZYNQ7 Processing System block and customize it as follows

a. We need to enable the M_AXI_GP0 interface which will be used to write memory-

mapped registers within the AXI Counter IP. The M_AXI_GP0 interface is enabled by

navigating to PS-PL Configuration  AXI Non Secure Enablement  GP Master AXI

Interface  M AXI GP0 interface (shown in the figure below).

Figure 8 – Enabling M_AXI_GP0 PL Interface

Page 8

b. There is an issue with using UART0 on the MiniZed so we must disable it in order to

force UART1 to be used. To disable UART0 select Peripheral I/O Pins and deselect

UART 0

Figure 9 – Disabling UART 0

c. Per UG1146 we must enable fabric interrupts and connect a Concat block to the PS

interrupt port. To enable interrupts select Interrupts and enable Fabric Interrupts.

Figure 10 - Fabric Interrupts

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1146-sdsoc-platform-development.pdf

Page 9

d. Next enable PL-PS Interrupt Ports by expanding Fabric Interrupts and selecting

IRQ_F2P[15:0]

Figure 11 - IRQ_F2P[15:0]

e. Click OK

13. Double-click on the Concat block and customize it with 1 input port then click OK

Figure 12 - Concat Block with 1 Input Port

Page 10

14. For our platform we are adding 3 PL clocks using the Clocking Wizard. We could use clocks
generated by the PS, but using the Clocking Wizard allows for more flexibility during routing by
Vivado. Double-click on the Clocking Wizard block and customize it with 3 output clocks

a. Click on the Output Clocks tab and set the following output clock frequencies and reset

option

i. clk_out1 = 50 MHz, clk_out2 = 75 MHz, clk_out3 = 100 MHz

ii. Reset Type  Active Low

Figure 13 - Clocking Wizard

b. Click OK

15. Double-click on the AXI SmartConnect block and customize it with 1 AXI Slave interface then

click OK. The AXI SmartConnect block is used to handle port differences between the AXI

interface on the PS and the AXI Counter IP.

Figure 14 - AXI SmartConnect with 1 AXI Slave Interface

Page 11

16. Double-click on the AXI4-Stream Data FIFO and set the following parameters

a. FIFO Depth to 4096

b. Asynchronous Clocks to Yes

c. TDATA Width (bytes) to 4 – Note: You need to change the toggle from Auto to Manual

d. Click OK

Figure 15 - AXI4-Stream Data FIFO Customization

17. We need to connect all of our components now that they are customized. Make the following

connections (components shown in bold font, ports shown in green italicized font)

a. xlconcat_0 dout port to processing_system7_0 IRQ_F2P port

b. processing_system7_0 FCLK_RESET0_N port to

i. proc_sys_reset_0 ext_reset_in port

ii. proc_sys_reset_1 ext_reset_in port

iii. proc_sys_reset_2 ext_reset_in port

iv. clk_wiz_0 resetn port

c. processing_system7_0 FCLK0 port to clk_wiz_0 clk_in_1 port

d. clk_wiz_0 clk_out_1 port to proc_sys_reset_0 slowest_sync_clk port

Page 12

e. clk_wiz_0 clk_out_2 port to

i. proc_sys_reset_1 slowest_sync_clk port

ii. processing_system7_0 M_AXI_GP0_ACLK port

iii. smartconnect_0 aclk port

iv. axis_data_fifo_0 s_axis_aclk port

v. axi_counter_ip_0 clk and s_axi_aclk ports

f. clk_wiz_0 clk_out_3 port to

i. proc_sys_reset_2 slowest_sync_clk port

ii. axis_data_fifo_0 m_axis_aclk port

g. clk_wiz_0 locked port to

i. proc_sys_reset_0 dcm_locked port

ii. proc_sys_reset_1 dcm_locked port

iii. proc_sys_reset_2 dcm_locked port

h. proc_sys_reset_1 peripheral_aresetn port to

i. axi_counter_ip rst_n and s_axi_aresetn ports

ii. axis_data_fifo_0 s_axis_aresetn port

iii. smartconnect_0 aresetn port

i. proc_sys_reset_2 peripheral_aresetn port to axis_data_fifo_0 m_axis_aresetn

j. Expand the S_AXIS interface on the axis_data_fifo_0 component to expose the

s_axis_tdata and s_axis_tvalid ports. Make the following connections

i. axi_counter_ip counter[31:0] port to axis_data_fifo_0 s_axis_tdata[31:0]

ii. axi_counter_ip counter_valid port to axis_data_fifo_0 s_axis_tvalid port

k. axi_counter_ip_0 s_axi interface to smartconnect_0 M00_AXI interface

l. smartconnect_0 S00_AXI interface to processing_system7_0 M_AXI_GP0 interface

Page 13

18. Regenerate the block design layout by clicking on at the top of the IPI canvas. The block

diagram should look like Figure 16.

Note: the M_AXIS interface of the axis_data_fifo_0 component is left unconnected in the block

design. We will define this interface for use by the SDSoC application.

Figure 16 – Final Hardware Platform IPI Block Diagram

19. Click on Address Editor tab, if the Address Editor tab does not appear in your BLOCK

DESIGN window then Navigate to Window  Address Editor using the Vivado menu

a. Click on the Auto Assign Address button then OK at the Auto Assign Address pop-

up

b. Notice that an address offset of 0x43C0_0000 was set for the axi_counter_ip_0

component. If it was not set to that value you will need to change it or remember to

change the SDSoC application source code (counter_control.h) to use the address

assigned by Vivado.

Figure 17 - Address Editor

20. Click on the Diagram tab and validate the block design by clicking on

Page 14

21. You should get a pop-up that says “Validation Successful. There are no errors or critical

warnings in this design.” If you don’t get this message then fix the issues and revalidate. Click

OK to dismiss the pop-up.

Figure 18 - Validation Successful

22. Save the block diagram

23. Our block design is now complete and we are ready to generate output products. In order to

proceed we need to create a HDL wrapper for the block design and set it as the top level design

file. Vivado can automatically create a wrapper and set it as the top file. In the Sources window

right-click on the mz_stream_bd design source and select Create HDL Wrapper

Figure 19 - Create HDL Wrapper

a. At the pop-up leave the Let Vivado manage wrapper and auto-update radio button

selected and click OK

Figure 20 - Create HDL Wrapper Dialog

Page 15

24. Next we need to define the interfaces that our SDSoC application can access. The Tcl

commands used to define these interfaces are described in detail in UG1146 if you are interested

in exploring. To save time, execute the mz_stream_pfm.tcl script from the support directory

which already defines the SDSoC interfaces.

In the Tcl Console execute

source C:/training/support/mz_stream_pfm.tcl

25. Save the block diagram and Run Implementation. At the pop-up click OK to launch the runs.

Figure 21 – Run Implementation

26. When implementation is complete open the implemented design

Figure 22 – Open Implemented Design

Note: It is assumed that you have followed the naming conventions specified in this

document. If that is not the case then you will need to update the Tcl script appropriately.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1146-sdsoc-platform-development.pdf

Page 16

27. Next we will create the Device Support Archive (DSA) which is used by the SDSoC tool to

understand the hardware platform

a. In the Tcl Console change directories to the Vivado project directory

cd C:/training/vivado_project/mz_stream

b. Execute

write_dsa –force mz_stream.dsa

c. Execute

validate_dsa mz_stream.dsa

28. Close the Vivado project and exit Vivado

Software Platform

The software platform definition is created automatically by SDSoC in this lab using the SDSoC “Build

software platform components” option. The SDSoC Platform section below describes how to use this

option.

SDSoC Platform

The SDSoC platform generation procedure in this experiment is similar to “A Practical Guide to Getting

Started with Xilinx SDSoC”. The only exception is that we will be using a new Device Support Archive file.

For this experiment we will create a new workspace that will contain the SDSoC platform and the SDSoC

application.

1. Launch the SDx GUI

2. In the “Select a directory as workspace” dialog set the workspace to

C:\training\SDx_wksp_mz_strm and click OK

3. Close the Welcome window if it appears

4. In the Project Explorer pane, right-click and select New  SDx Project

Figure 23 – New SDx Project

Page 17

5. Select Platform Project and click Next

Figure 24 – Platform Project

6. Select the DSA file that was generated in step 27 of the Hardware Platform section.

7. Select the Build software platform components (Beta) option and click Finish.

Figure 25 – Platform Specification

8. In the “Platform: mz_stream” window click on

9. Fill out the dialog box with the information shown in the figure below and click OK.

Figure 26 - SDSoC Platform System Configuration

Page 18

10. Click on and enter the information shown in the figure below

then click OK

Figure 27 - SDSoC Platform Domain

11. Click and wait for platform generation to complete then click OK to dismiss

the pop-up

Figure 28 – Platform Generation Completed

12. Click to add the SDSoC platform to the platform repository for the

current workspace then click OK to dismiss the pop-up

Figure 29 – Platform Added to Custom Repositories

Page 19

13. There is an issue with the linker script generated by SDSoC which defines a heap size that is too

large for the DDR memory on the MiniZed, so we need to update the linker script with an

acceptable heap size

a. In Windows Explorer navigate to

C:\training\SDx_wksp_mz_strm\mz_stream\export\mz_stream\sw\config0\a9_standalone

b. Open lscript.ld with a text editor

Figure 30 – Linker Script in Windows Explorer

c. Search for the line containing

_HEAP_SIZE = DEFINED(_HEAP_SIZE) ? _HEAP_SIZE : 0x30000000;

d. Modify the line with a heap size of 0x10000000

_HEAP_SIZE = DEFINED(_HEAP_SIZE) ? _HEAP_SIZE : 0x10000000;

14. Save and close the linker script

15. SDSoC platform generation is complete

Page 20

Discussion: Create the Platform
In Experiment 1 we created the SDSoC platform for the MiniZed that will allow the SDSoC application to
access streaming input data. Figure 31 below shows the AXI4-Stream Data FIFO which temporarily stores
the streaming input data. In Experiment 2 we will create the SDSoC application which will connect to the
FIFO master AXI4-Stream interface to read the data from the input stream.

Figure 31 – SDSoC Platform and Application Connection

During platform creation we added a Clocking Wizard IP block instead of enabling more output clocks from
the PS. There can be issues with closing timing when all clocks are sourced from the PS. In order to
improve our timing results the Clocking Wizard was added which puts PL clock generation in the PL rather
than the PS, and gives the tool more flexibility when routing the design.

The programmable counter operates at a maximum sample rate of 75 MHz. The highest clock available in
the platform is 100 MHz which we will use in our application for the data movement clock. We want our
data movement clock to be higher than the input data rate in order to be able to read the FIFO fast enough
to prevent overflows.

The programming interface for the counter is an AXI4-Lite memory-mapped interface that is defined as part
of the hardware platform. This method of platform definition/connection follows the traditional Vivado/SDK
development flow. SDSoC supports writing data to memory-mapped addresses in the same way that is
supported by SDK. This is very handy if we have a previous application that used the traditional flow, but
want to update the application to use SDSoC. In that case we may not need to update the hardware or
software platforms, we just need to create the SDSoC platform by following the steps outlined in the SDSoC
Platform section of Experiment 1.

In step 24 of Experiment 1 we executed the mz_stream_pfm.tcl script which defines the platform interfaces
available to the SDSoC application. The Tcl script defines PL clocks as well as AXI and interrupt ports that
SDSoC uses to move data between PS and PL. A portion of the Tcl script is shown in Figure 32 below.
The script excerpt shows the AXI4-Stream master port exported for use with SDSoC. It can be seen that
the “M_AXIS” port of type “M_AXIS” from the axis_data_fifo_0 component is being exported for use by the
SDSoC application. We will use the sys_port pragma in our SDSoC application to directly connect to the
M_AXIS port of the axis_data_fifo_0 component.

Figure 32 – AXI4-Stream Data FIFO Port Definition

SDSoC
Application

Page 21

Experiment 2: Create the Application
In this experiment we will create the SDSoC application which programs a PL counter by writing memory-
mapped registers over an AXI4-Lite interface. The output of the counter feeds an AXI4-Stream Data FIFO
which the SDSoC application accesses to get data from the PL.

1. If you skipped Experiment 1 perform a-c below. Proceed to step 2 below if you completed

Experiment 1.

a. Launch the SDx GUI

b. In the “Select a directory as workspace” dialog set the workspace to

C:\training\SDx_wksp_mz_strm and click OK

c. Close the Welcome window if it appears

d. In the SDx GUI menu navigate to Xilinx  Add Custom Platform

Figure 33 – Add Custom Platform

e. Click on the Add Custom Platform button and then browse to

C:\training\support\platforms\mz_stream and click OK

Figure 34 – Add Custom Platform

Page 22

f. Finally, click OK on the Platform Repositories pop-up. You should see the mz_stream

platform listed as shown in the figure below.

Figure 35 – mz_stream Platform Added to Repository

2. Create the application project

a. In the Project Explorer pane, right-click and select New  SDx Project

Figure 36 - New SDx Project

b. Select Application Project and click Next

Figure 37 – Application Project

Page 23

c. For the project name use mz_stream_app and click Next

Figure 38 – MiniZed Streaming I/O Application

d. Select the mz_stream [custom] platform and click Next

Figure 39 – Platform Selection

Page 24

e. On the System configuration window click Next

Figure 40 – System Configuration

f. In the Templates window select Empty Application and click Finish

Figure 41 – Empty Application

Page 25

3. Import the project source code
a. Expand the project in the Project Explorer pane

b. Right-click on the src directory and select Import

Figure 42 – Import Source Code

c. In the import window expand the General category and select File System then click
Next

Figure 43 – Import from File System

Page 26

d. Browse to the C:\training\support\source directory and Select All source files for
import then click Finish

Figure 44 - File System Browser

4. Select the function for Hardware Acceleration that will move data between the PL FIFO buffer and
the PS (Note: we aren’t really hardware accelerating this function, we are just moving it to
programmable logic to act as a shim between the PL FIFO and the Zynq PS)

a. In the Hardware Functions pane click on the icon

b. After the source code is indexed a list of functions will be available for acceleration –
Choose the read_stream function and click OK

Figure 45 – Application Function List

Page 27

c. Notice that the read_stream function now shows up in the Hardware Functions pane

Figure 46 - Hardware Functions

d. The maximum counter rate for the programmable PL counter is 75 MHz. We want to

select accelerator and data motion network clock frequencies of 100 MHz to ensure
that we are emptying the PL FIFO as fast as possible. These values should be default
(defined in the mz_stream_pfm.tcl script).

5. In order to speed up the build process we will enable parallel build capabilities

a. Right-click on the project folder and select Properties

Figure 47 – Project Properties

b. Click on the C/C++ Build category

Note: The master side of the AXI-Stream FIFO in the HW platform was connected to the 100
MHz clock. Choosing a data mover clock other than 100 MHz will result in an error.

Page 28

c. Select the Behavior tab, select Enable parallel build and click OK

Figure 48 - C/C++ Build Settings

6. Build the application
a. Right-click on the project folder and select Build Project

Figure 49 – Build Project

b. The build process will start and you may see a critical warning stating “failed DSA
integrity check: digest mismatch.” This warning indicates that the DSA has been
modified outside of the Vivado tool suite. We can ignore this warning because the DSA
was not modified outside of Vivado and does not impact this lab.

Page 29

7. When the build completes a directory named sd_card will be created under the Debug folder in
the project (assuming Debug build is selected instead of Release). The sd_card directory
contains the necessary files for running the application on the MiniZed.

Figure 50 – SD Card Directory Containing MiniZed Boot Files

8. Creation of the SDSoC application is complete

9. Experiment 3 will cover programming the MiniZed and running the application.

Page 30

Discussion: Create the Application
In Experiment 2 we created and built the SDSoC application which configures the programmable counter
and reads data from an AXI4-Stream FIFO in the hardware platform. Figure 51 below shows a block
diagram representation of the application mapped to PS and PL.

Figure 51 – SDSoC Application

The SDSoC application starts by querying the user for counter parameters (initial value, increment, and
update rate). Next the application programs and enables the counter using an AXI4-Lite memory-mapped
control interface. Counter control functions are located in the counter_control.h file as a class of functions
which write to memory-mapped registers using the Xil_Out32 driver. Another method for writing to the
memory-mapped registers would be to use a pointer to the counter’s memory-mapped address space.
These methods are valid for bare-metal applications only. For Linux applications the UIO device driver
must be used with an appropriate device tree entry. Once the counter is configured and enabled the SDSoC
application calls the read_stream() function which corresponds to the “Read PL FIFO” operation shown in
Figure 51 above. The read_stream() function reads data from the AXI4-Stream data FIFO in the PL and
moves it to memory allocated within DDR for the PS part of the SDSoC application to use. Finally, the
counter data located in DDR is checked for correctness and the test completes.

Figure 51 above shows a simplified view of the system. For a detailed view open the Vivado project located
in C:\training\SDx_wksp_mz_strm\mz_stream_app\Debug_sds\p0_vpl\ipi\syn. Figure 52 below shows
the full system after the SDSoC application has been mapped to PS and PL. The details of the IPI block
diagram are difficult to see in Figure 52, but we can see a Vivado HLS component located in the top right
of the diagram which corresponds to the read_stream function. The remainder of the additional blocks,
when compared to Figure 16, are to handle the data movement between the PS and PL.

Page 31

Figure 52 - Vivado IPI Block Diagram after SDSoC Application Partitioning

Our SDSoC application connects to the AXI4-Stream Data FIFO through use of the sys_port pragma. The
figure below shows use of the pragma which is applied to the read_stream() function. This pragma informs
the SDSoC compiler that function argument p_stream (p_ is handy nomenclature to indicate a variable is a
port) should directly connect to the M_AXIS port of the PL FIFO. The tag “axis_data_fifo_0_M_AXIS”
defines the system port to bind argument p_stream to and is comprised of the AXI4-Stream Data FIFO
component name (axi_data_fifo_0) and the component port (M_AXIS). This information was defined in our
mz_stream_pfm.tcl script (Figure 32). The additional pragmas shown in Figure 53 inform the SDSoC
compiler how much data to move between the PL and PS as well as the data access pattern. See UG1253
for a detailed explanation of SDSoC pragmas.

Figure 53 – SDSoC Pragmas for Function read_stream()

Figure 54 shows code fragments of read_stream.cpp which demonstrate reading data from the PL FIFO

(line 98), copying the stream data to a local PL memory (line 98), and writing the contents of local PL

memory to the PS (lines 125 – 130).

Figure 54 – Function read_stream Code Fragments

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1253-sdx-pragma-reference.pdf

Page 32

Our application copies streaming data to a local PL memory (l_buffer) before transferring to the PS. We

could modify the application to remove the local PL buffer as shown in the example code of Figure 55.

Figure 55 also shows an averaging operation which is computed over 8 input samples and demonstrates

how a function can operate on streaming data in the PL before being transferred to the PS.

Figure 55 – Example Code

The read_stream.cpp file also contains logic to flush the PL FIFO (shown in Figure 56 below). The

flushing logic works by searching for the first expected sample value in the stream. All samples found

prior to this value are discarded. Flushing is performed between iterations of the while-loop in

mz_axi_stream() so that we are not analyzing stale data.

Figure 56 – PL FIFO Flush Logic

Page 33

The AXI4-Stream data FIFO that we inserted in the PL during hardware platform creation had a depth of

4,096. The data movement framework provided by the SDSoC compiler adds an additional 1K buffer

which must also be cleared before starting a new test. Thus, to clear the data path of old data we first

read 4,096 samples from the PL FIFO (normal read shown in Figure 57 below) followed by a read to flush

the remaining 1K samples in the data path (flushing read shown in Figure 58 below).

Figure 57 - Normal Read to Clear 4,096 Samples

Figure 58 - Flushing Read to Clear 1K Samples from Data Movement Framework
(flush_flag = 1)

Page 34

Experiment 3: Test the Application
In this experiment we will program the MiniZed with the application built during Experiment 2. The following
steps cover programming the MiniZed and executing the application.

Connect the Hardware

1. First configure the boot jumper. You can select between FLASH and JTAG booting. We want to
ensure switch 1 is set towards the F or PS_Button.

a. Note: From the Factory the switch’s protective film should be removed and already set to
F. If it is not, the switch will look similar to Figure 59.

Figure 59 - Untouched Boot Switch

b. If your MiniZed boot configuration switch is similar to the above, remove the protective film
and slide switch 1 (indicated by the silkscreen DASH above the F) to be toggled to FLASH
Booting (F).

2. Next plug the MiniZed into your PC in order to register the board with a COM port

a. Note: Windows 10 has been known to create two COM ports when plugging the MiniZed
into the PC.

b. With a factory fresh board, open two instances of your terminal program (PuTTY or Tera
Term), one for each COM port; 8,N,1,115200

c. Reboot your MiniZed using the Reset button

d. The terminal window that shows text output from the MiniZed is connected to the COM port
of interest. Close the other terminal window.

Page 35

Program the MiniZed

1. From the SDx GUI launch a shell window
a. Under the Xilinx menu in SDx click on Launch Shell

Figure 60 – Launch SDx Shell

b. Change directories to your workspace (C:\training\SDx_wksp_mz_strm) if not already
there

i. cd C:\training\SDx_wksp_mz_strm

2. From the command prompt execute the following to program the MiniZed

a. If you completed Experiment 1 use:

program_flash –f mz_stream_app\Debug\sd_card\BOOT.BIN –fsbl
mz_stream\export\mz_stream\sw\config0\boot\fsbl.elf –flash_type qspi_single

b. If you skipped Experiment 1 use:

program_flash –f mz_stream_app\Debug\sd_card\BOOT.BIN –fsbl
C:\training\support\platforms\mz_stream\sw\config0\boot\fsbl.elf –flash_type
qspi_single

3. After programming completes reset the MiniZed by pressing and releasing the reset button

near the MiniZed PMOD connectors

4. You should see a prompt from the MiniZed in your terminal window asking for input. Try the
following values

a. Initial counter value = 0
b. Counter increment value = 1
c. Counter update rate = 2

Page 36

5. You should see the following output in your terminal window

Figure 61 – First Program Execution Output

6. The program halts and asks if you would like to run again. Type y and press Enter on your
keyboard.

7. Repeat the test with a counter update rate of 1 (75 MHz)

a. Notice how errors are detected in the last buffer(s). This indicates that we are not able to
empty the PL buffer fast enough to support the 75 MHz sample rate

b. This issue will be addressed in an additional lab

Figure 62 – Program Output with 75 MHz Counter Update Rate

8. To exit the program type n at the prompt and then press Enter on your keyboard

Page 37

Discussion: Test the Application
In Experiment 3 we tested the SDSoC application on the MiniZed platform. We noticed that errors were
detected in the DDR buffers when a sample rate of 75 MHz was selected. This indicates that we are unable
to read from the PL FIFO fast enough to prevent an overflow. This was by design to set up for an additional
lab titled “Advanced Concepts with Xilinx SDSoC – Asynchronous Accelerators” where we will look at
running our PL accelerators asynchronously to reduce the function call overhead.

Conclusion
This lab covered creating a SDSoC platform to support streaming input data as well as accessing the
streaming data from a SDSoC application running a standalone operating system. The streaming input
data was modeled with a programmable counter residing in the PL that is configured using an AXI4-Lite
memory-mapped interface. The output of the PL counter filled an AXI4-Stream data FIFO which our SDSoC
application was directly connected to move streaming data from PL to DDR. Our SDSoC application
running on the PS then read the DDR data and checked it for correctness.

After completing this lab you should be able to develop your own streaming platform for use with SDSoC!

Page 38

Appendix A: Getting Support
Avnet Support

 Technical support is offered online through the minized.org website support

forums. MiniZed users are encouraged to participate in the forums and
offer help to others when possible.

 To access the most current collateral for the MiniZed, visit the community
support page (www.minized.org/content/support) and click one of the icons
shown below:

o MiniZed Documentation
http://minized.org/support/documentation/18891

o MiniZed Reference Designs

http://minized.org/support/design/18891/146

http://www.minized.org/
http://www.minized.org/content/support
http://minized.org/support/documentation/18891
http://minized.org/support/design/18891/146

Page 39

Xilinx Support
The following technical support options are available to Xilinx customers:

 Technical information is available online 24 hours a day from the Support website
 Technical Support staff are available to respond to your questions in the Community Forums
 Individual assistance from Xilinx Technical Support may be available through Service Portal
 Phone support is only available with an active open case number

Global Phone Number

Region Language Phone** Support Hours*

North America EN
1 800-255-7778 or +1 408-
879-5199

M-F 7:00 -17:00
PST

Europe, Middle East
and Africa

EN, DE, FR
00 800-5152-5152 or +353
1-461-5700

M-F 8:00 -17:00
GMT

China
CH (Mandarin),
EN

+86 800 988 0218
+86 400 880 0218 (Mobile
Phone)

M-F* 9:00 -18:00
CST

Taiwan
CH (Mandarin),
EN

+886 2-8176-1060
M-F 9:00 -18:00
CST

Hong Kong
CH (Mandarin),
EN

+852 3187-3855
M-F 9:00 -18:00
CST

* Support hours listed apply for both standard and daylight savings (summer) time. Please check
the Technical Support Holiday Calendar for support availability during holidays in your region.

** 00 800-5152-5152 is a international free phone (toll free) number available in the following countries:
Austria, Belgium, Denmark, Finland, France, Germany, Ireland Israel, Italy, Luxembourg, Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, and United Kingdom. All other countries must use
+353 1-461-5700.

** For the numbers listed, '+' represents the International Direct Dialing (IDD) prefix of the country from
which you are calling. Please consult your local telephone service provider for more information on
specific IDD instructions.

https://www.xilinx.com/support.html
http://forums.xilinx.com/
https://www.xilinx.com/support/service-portal.html
https://www.xilinx.com/support/service-portal/techsupport_calendar.html

Page 40

Revision History

Date Version Revision

4/19/2018 1 Initial release

	Objectives
	 Learn how to create a SDSoC platform that supports streaming input data
	 Create a SDSoC application that accesses the input data stream

	Overview
	Lab Setup
	Setting Up For the Lab
	Experiment 1: Create the Platform
	Discussion: Create the Platform
	Experiment 2: Create the Application
	Discussion: Create the Application
	Experiment 3: Test the Application
	Discussion: Test the Application
	Conclusion
	Appendix A: Getting Support
	Avnet Support
	Xilinx Support
	Global Phone Number

	Revision History

