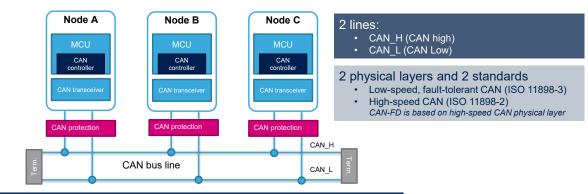


CAN bus protection -ST ESDCAN series

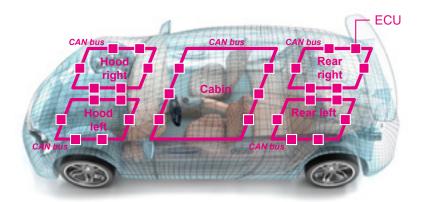
Agenda


- CAN bus overview and standards
- Why protection is needed
- ESDCAN series versus standards
- ESDCAN series versus quality of protection

- Package miniaturization
- 5 questions to select the right ESDCAN
- More on ESDCAN series

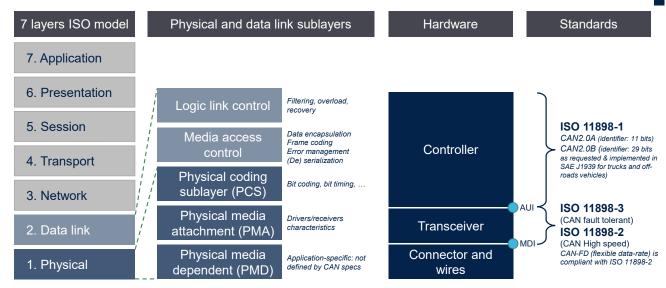
Controller area network bus overview

Cost-effective, light-weight, safe and reliable transmission, and information available for all nodes



Where CAN is used

The CAN bus is reliable and is used to connect most ECUs in a car domain or car zone, including safety and critical functions



4

ebv.com EBV Elektronik

CAN standards ecosystem

NB: SAE-J2962 (communication transceivers qualification requirements) is based on ISO 11898-1 and ISO 11898-2
*AUI: Attachment unit interface *MDI: Media-dependent interface

CAN bus characteristics

Parameters	High-speed CAN	Low-speed CAN			
Physical layer standards	ISO 11898-2	ISO 11898-3			
Data rate	Up to 1 Mbps (5 Mbps for CAN-FD)	Up to 125 kbps			
Maximum length	30 m	500 m			
Termination	120 Ω shunt	$2.2~k\Omega$ serial on each line			
Recessive voltage level	$V_{CAN_H} = V_{CAN_L} = 2.5 \text{ V}$	$V_{CAN_H} \sim 0 V$ $V_{CAN_L} \sim 5 V$			
Dominant voltage level	$V_{CAN_H} = 3.6 V$ $V_{CAN_L} = 1.4 V$	$V_{CAN_H} = 4 V$ $V_{CAN_L} = 1 V$			
	. •	. •			
	V _{CNI,H} V _{CNI,L} Recessive Dominant Recessive	V _{CAN_H} V _{CAN_L} Recessive Dominant Recessive			

life.augmented

3 ebv.com EBV Elektronik

6

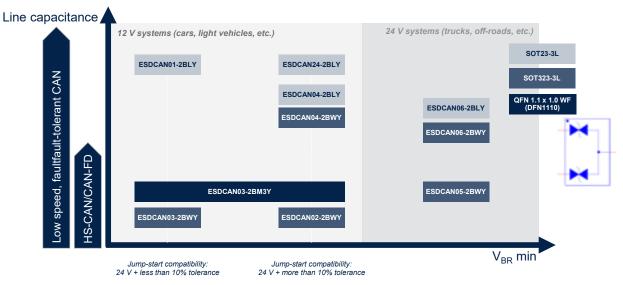
Why protection needed

- Automotive systems require a high level of robustness and must be extremely reliable, especially when they control safety devices.
- The automotive industry has defined standards to guarantee the robustness of car embedded electronics.
- The SAE-J2962 (communication transceivers qualification requirements) standard recommends using protection devices for CAN transceivers to prevent dramatic failures.

.

Relevant standards for CAN link compliance

Standards	Hazards	Туре	CAN protection specifics
ISO 10605	ESD protection	Voltage spikes due to electro-static discharges.	ESD robustness up to 30 kV (R=330 Ω , C= 330 pF) and low ESD clamping voltage
ISO 7637-3 pulse 3a/3b	Surge protection	Voltage spikes due to switching processes (influenced by capacitance and inductances of the wiring harness)	Must pass the surge and efficiently clamp the generated overvoltages
ISO 16750	Jump start	Application of 24 V on all inputs to simulate a jump start with a 24 V battery	Reverse breakdown voltage V _{BR} > 24 V
ISO 16750	Reverse battery	Application of -14 V for 12 V battery nominal voltage (passenger cars, etc.) and -28V for 24 V battery nominal voltage (trucks, off-roads, etc.) over 60 s to simulate reversed battery connection when using an auxiliary starting device	Forward breakdown voltage V_{BR} < -14 V for 12 V battery Forward breakdown voltage V_{BR} < -28 V for 24 V battery



8

ebv.com EBV Elektron

ESDCAN series mapping

Low line capacitance ESDCAN are recommended for High-speed CAN and CAN-FD

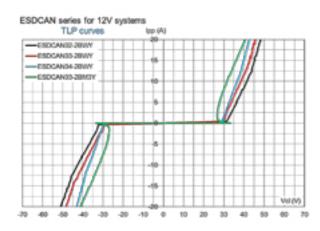
ESDCAN series versus standards

Hazards	Standards	ESDCAN24-2BLY	ESDCAN01-2BLY	ESDCAN04-2BLY	ESDCAN06-2BLY	ESDCAN02-2BWY	ESDCAN03-2BWY	ESDCAN04-2BWY	ESDCAN05-2BWY	ESDCAN06-2BWY	ESDCAN03-2BM3Y
ESD protection	<i>ISO</i> 10605 (C = 150 pF, R = 330 Ω)	±30 kV contact	±30 kV contact	±30 kV contact	±30 kV contact	±30 kV contact	±30 kV contact	±30 kV contact	±30 kV contact	±30 kV contact	±15 kV contact
Surge protection	ISO 7637-3 pulse 3a/3b	~	~	~	~	~	V	~	~	~	~
Jump-start	ISO 16750	V _{BR} min (reverse) = 27 V	V _{BR} min (reverse) = 25 V	V _{BR} min (reverse) = 27.5 V	V _{BR} min (reverse) = 38 V	V _{BR} min (reverse) = 28.5 V	V _{BR} min (reverse) = 26.5 V	V _{BR} min (reverse) = 27.5 V	V _{BR} min (reverse) = 39 V	V _{BR} min (reverse) = 38 V	V _{TRIG} min (reverse) = 28 V
Reverse battery	ISO 16750	V _{BR} min (forward) = 27 V	V _{BR} min (forward) = 25 V	V _{BR} min (forward) = 27.5 V	V _{BR} min (forward) = 38 V	V _{BR} min (forward) = 28.5 V	V _{BR} min (forward) = 26.5 V	V _{BR} min (forward) = 27.5 V	V _{BR} min (forward) = 39 V	V _{BR} min (forward) = 38 V	V _{TRIG} min (reverse) = 28 V

10

ebv.com EBV Elektronik

ESDCAN series quality of protection


- Not only must protection features comply with standards, but they must efficiently protect against surges, even at high temperature.
- The quality of protection is measured by its ability to clamp overvoltages and overcurrent, thus protect the CAN transceiver and all the PHY components against EOS/ESD.
- The lower the clamping voltage, the greater ESD immunity.
- This clamping voltage is usually measured using TLP (transmission line pulse) method. Read more in AN5241

4.

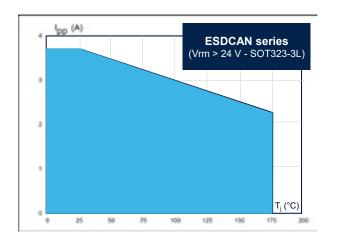
ESDCAN series High EMC immunity against surges

High ESD robustness: Up to 30kV-ISO 10605

High EOS robustness: Up to 5.5A–8/20µs surge

High protection quality:

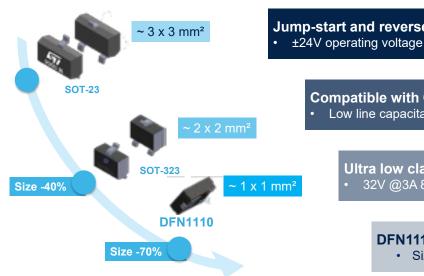
Low clamping voltage



12

6 ebv.com EBV Elektronik

ESDCAN series High temperature operation


Low derating with temperature

STMicroelectronics **ESDCAN series** still

ESDCAN series maximum junction temperature: T_J max = 175°C

Package miniaturization with ESDCAN03-2BM3

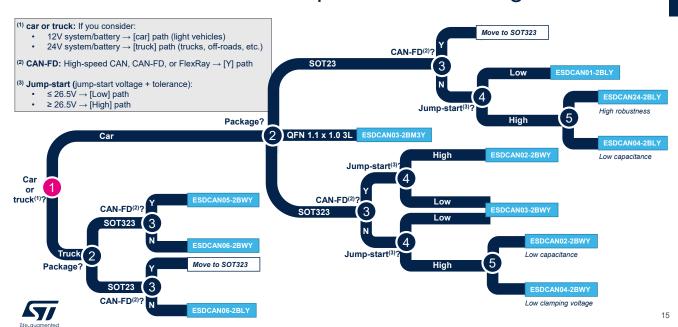
Jump-start and reverse plugging compatibility

Compatible with CAN, CAN-FD and FlexRay

Low line capacitance: 3.3 pF

Ultra low clamping voltage

32V @3A 8/20µs

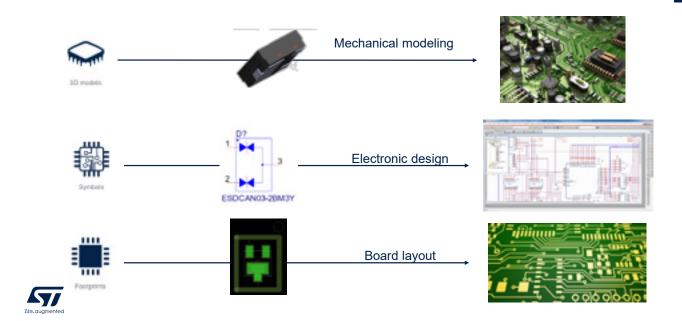

DFN1110 package

Size: 1.10 mm x 1.0 mm x 0.55 mm

14

ebv.com EBV Elektronik

5 steps to select the right ESDCAN


More on ESDCAN series

ebv.com EBV Elektronik

16

Create a Digital Twin with ST CAD resources

Go digital in four steps

CONTACT

EBV Elektronik GmbH & Co. KG D-85586 Poing

Im Technologiepark 2-8 Phone: +49 (0)8121 774-0 Fax: +49 (0)8121 774-422

Technology. Passion. EBV. ebv.com