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Sensorless Field-Oriented Control of Permanent Magnet 

Synchronous Motor (Surface and Interior) for Appliances 
with Angle-Tracking Phase-Locked Loop Estimator
INTRODUCTION

Many countries pursue standards which require
increasing energy efficiency in domestic appliances,
such as air conditioners, refrigerators, washing
machines, fans and so on. Additionally, manufacturers
and consumers prefer to reduce the size of such
appliances. A Permanent Magnet Synchronous Motor
(PMSM) is an ideal choice for such applications due to
its high efficiency, energy density and robustness.

PMSMs require sophisticated control schemes
customized to suit the motor, load and the appliance
system to achieve the best possible efficiency, durability
and robustness.

This document discusses the control scheme and
some of the load-specific algorithms for control of
PMSM-driven appliances, for example, compressors,
washing machines and fans.

PERMANENT MAGNET 
SYNCHRONOUS MOTOR (PMSM)

The PMSM is made of a stationary part called the stator
and a rotating part called the rotor. A stator consists of
three phase windings, and when excited with a
balanced three-phase voltage, it produces a rotating
magnetic field. A rotor has permanent magnets, which
produce their own magnetic field. The motor rotates
due to torque produced when these two fields interact.

PMSMs are classified into two categories depending
on the rotor construction:

1. Surface Mount: The magnets are mounted on the
surface of the rotor. They need special profiling to get
a sinusoidal Back EMF (BEMF). This results in a
symmetrical air gap reluctance for the magnetic flux
path. Such a motor is called a Surface-Mounted
Permanent Magnet Synchronous Motor (SPMSM).

FIGURE 1: SPMSM INDUCTANCES
(Ld = Lq)

2. Interior Mount: Magnets are embedded deep
inside the rotor. This results in an asymmetrical air
gap reluctance for the magnetic flux path. Such a
motor is called an Interior-Permanent Magnet
Synchronous Motor (IPMSM).

FIGURE 2: IPMSM INDUCTANCES
(Ld < Lq)

Practically, even the surface-mounted PMSMs have
slight asymmetry in their reluctance path due to manu-
facturing processes and materials used. A measure of
this asymmetry is called, ‘saliency’, which is calculated
based on the inductance variation along the stator.

Saliency produces its own torque, similar to a force pro-
duced on an iron bar in a solenoid. This torque is called,
‘reluctance torque’, which is different and additional to
the ‘permanent magnetic torque’ that is produced due
to interaction of stator and rotor fields.
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FIELD-ORIENTED CONTROL
Field-Oriented Control (FOC) is a control method in
which electrical quantities of a three-phase PMSM are
modeled and controlled as vectors. These vectors can
be split into two orthogonal components: one along the
rotor magnetic flux (‘direct axis’ denoted by ‘d’) and the
other orthogonal (‘quadrature axis’ denoted by ‘q’) to it. 

This gives an independent control of torque and flux,
which gives the best dynamic performance possible for
the motor compared to other control schemes, such as
sinusoidal control or trapezoidal control.

The physical three-phase quantities of the motor are
transformed into a rotating reference frame aligned
with the rotor flux (field orientation). By aligning the ref-
erence frame in the direction of rotor flux, the torque
and flux producing components of the currents are
decoupled and can be controlled independently. 

This transformation is achieved by the Clarke transfor-
mation (abc to ) and the Park transformation ( to
dq). The Park transformation transforms sinusoidal
currents to DC currents. These DC currents are inputs
to the Proportional Integral (PI) controllers, which
control the torque and flux.

The outputs of current PI controllers are modulation
indices, which are then transformed back to three-
phase modulation indices, by performing the inverse
Park transformation (dq to ) and inverse Clarke
transformation ( to abc).

Speed control is achieved by controlling the torque pro-
duced by the motor. Since flux and torque components
are decoupled, the output of the speed controller can
be used as a reference for the torque producing
component of the current.

In a PMSM, unlike an induction motor, the flux producing
component of current can be maintained at zero as the
rotor flux is produced by permanent magnets.

For additional information on FOC of PMSMs, refer to
the Microchip Application notes AN1078, “Sensorless
Field Oriented Control of a PMSM” and AN1292, “Sen-
sorless Field Oriented Control (FOC) for a Permanent
Magnet Synchronous Motor (PMSM) Using a PLL
Estimator and Field Weakening (FW)” listed in the
“References” section.

The block diagram of FOC is shown in Figure 3.

FIGURE 3: FIELD-ORIENTED CONTROL (FOC) BLOCK DIAGRAM

For orienting the reference frame in the direction of the
rotor flux, the position of the rotor flux needs to be
known. This can be extracted from a speed position
sensor, such as an incremental encoder, Hall sensors
or a resolver, or from a speed position estimator. A
speed position estimator running in real time in the
Digital Signal Controller (DSC) receives applied volt-
ages and motor currents as inputs, and estimates rotor
flux position and speed as outputs.

The estimator gives reliable position information only
beyond certain speeds as the model is not accurate at
low speeds. Hence, it is required to start the motor in
open loop. The current loops can be closed to have
controlled currents. In an open loop, the position of the
reference frame is forcefully changed so that the motor
accelerates to a speed where the estimator gives reli-
able information. Once the estimator gives reliable
position of the rotor flux, the reference frame is slowly
aligned to the rotor flux. The entire starting sequence is
handled by a control state machine.
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ESTIMATOR – ANGLE-TRACKING 
PHASE-LOCKED LOOP (AT-PLL)

The information of the rotor position is embedded in the
rotor flux or BEMF. As shown in Equation 1, this can be
estimated by feeding the current and voltage
information to the motor model.

EQUATION 1:

Once the BEMF is known, the speed and position are
extracted using the AT-PLL.

Figure 4 shows the block diagram implementation of
the estimator (AT-PLL).

FIGURE 4: AT-PLL BLOCK DIAGRAM
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D-AXIS CURRENT REFERENCE 
GENERATION

In FOC, the flux component of current, which is aligned
to the rotor flux, is referred to as ‘D-axis’ current (Ids). A
positive Ids strengthens the air gap flux, whereas a
negative Ids weakens it. Hence, by controlling Ids, the air
gap flux of the motor can be controlled.

The torque component of current is referred to as the
‘Q-axis’ current (Iqs). Controlling this component
controls the speed of the motor.

Maximum Torque Per Ampere (MTPA)

Torque produced by the motor, as shown in Equation 2,
is a result of the interaction between the permanent
magnet flux with Iqs (called permanent magnet torque)
and Ids with Iqs (called reluctance torque). 

EQUATION 2:

By making Ids = 0, all the current drawn by the motor
can be used to produce the torque, thus ensuring that
the motor operates at its optimum operating point.

For IPMSM where Lds < Lqs, by making Ids negative,
reluctance torque can be made to aid permanent
magnet torque. By appropriate referencing of Ids, the
total current drawn can be minimized for a given torque
requirement. This algorithm (Equation 3) is called
Maximum Torque Per Ampere (MTPA) and it ensures
efficient operation of the IPMSM. The magnitude of Ids
is determined from Equation 3.

EQUATION 3:

Flux Weakening

As the speed of a motor increases, the BEMF
increases proportionately, leading to an increased
applied voltage demand. However, when it is required
to increase the speed beyond a certain point (called the
nominal speed) due to limitations on the DC bus
voltage (power switches, insulation and so on), no fur-
ther increase in applied voltage is possible. In such
scenarios, by applying a negative Ids, the voltage drop
across the stator inductance can be used to cancel out
part of the BEMF, allowing a higher speed for a given
DC bus voltage. This is called flux weakening, field
weakening or extended speed operation of the motor.
Here, the most optimal operating point is achieved
when the applied voltage lies on the maximum voltage
limit circle for that speed and load demand.

STALL DETECTION

Whenever the load on a motor increases beyond its
capability, or due to improper tuning, the motor stalls.
Stalls can be categorized into two kinds: Fast Stalls and
Slow Stalls.

• Fast Stalls: Occur due to the sudden variation of 
the operating point in a motor, which would mani-
fest as an overcurrent. Hence, phase current data 
are monitored to detect this Stall.

• Slow Stalls: Occur due to the slow addition of 
load or the improper tuning of a motor. This would 
manifest as a BEMF, which is much lower than 
the expected BEMF based on the set speed. As 
the BEMF information is available from the 
estimator, BEMF data are monitored to detect 
this Stall.
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APPLICATION-SPECIFIC ALGORITHMS

The previous sections dealt with a generic motor appli-
cation, which is the base control structure for running a
PMSM. However, different applications/appliances need
additional algorithms to meet their specific needs. 

This section deals with algorithms implemented to fulfill
these appliance-specific requirements. However, these
algorithms can also be applied to address require-
ments of other applications. Some of the usage
examples are discussed in the following sections. 

Initial Position Detection (IPD)

Typically, a PMSM is started by locking to a known
angle. This causes a retrograde rotation if the nearest
locking position is in the opposite direction of rotation.
In applications where this retrograde rotation is not
allowed, IPD is used. 

In the case of a salient pole motor, the inductance of the
motor varies with rotor position. Hence, by applying
different voltage vectors and measuring currents, rela-
tive inductances along different stator points can be
estimated, and the rotor position can be obtained.
Once the rotor position is obtained, the motor can be
directly started from the determined position, avoiding
the retrograde rotation.

Windmilling

For a typical application, when a voltage applied to a
motor is removed (de-energized), the motor continues
to spin due to its inertia. Additionally, for fan applica-
tions, even when the motor is de-energized, it can spin
continuously due to forces of wind blowing on the fan.
Under such circumstances, starting the motor does not
need locking. There is a BEMF generated due to the
free spinning of the motor because of the presence of
permanent magnets in the rotor. This BEMF can be
sensed to obtain the speed and position of the rotor.
This information is then used to start the motor.

Torque Compensation

Certain loads, such as a compressor, due to their
characteristics, may cause the motor to vibrate even
under steady-state conditions. The frequency of these
vibrations can be determined from the motor feedback.
Once the frequency is known, this algorithm works to
cancel out the effect of the frequency on the motor,
thereby reducing the vibrations.

Soft Stop

In flux weakening, when a motor running high-inertia
loads, such as a washing machine, is stopped abruptly,
the energy in the mechanical system is transfered back
to the electrical system. If this sudden burst of energy
is not handled properly, the increased DC bus voltage
might reach unsafe levels. 

One way to handle the increased DC bus voltage is to
reduce the motor speed in a controlled manner when-
ever a stop command is received. This ensures that the
DC bus voltage does not reach unsafe levels. Once the
speed of the motor attains a safe speed, the voltage
applied to the motor can be turned off, thereby stopping
the motor safely. 

Usage Examples

This section deals with a few appliance-specific require-
ments that can be addressed with the application-specific
algorithms discussed in the previous section.

FANS

The older models of fans used single-phase induction
motors, where they typically continue to spin from their
present speed to a set speed without any reverse rota-
tion, even during momentary power interruptions.
These legacy features are expected to be available in
PMSM-driven fans. 

The requirements can be summarized as follows:

• Start the fan from its standstill position. There 
should be no noticeable backward movement of 
the blades.

• When a de-energized fan is running in a forward 
direction (due to inertia or external wind blowing), 
in case of a power Reset, it should be able to 
catch the speed on-the-fly.

• When a de-energized fan is running in a reverse 
direction (due to inertia or external wind blowing), 
it should be smoothly and safely stopped from 
doing so before running in the forward direction.

It can be observed that some of these requirements are
aesthetic needs while running a fan, and hence, need
not be the basic requirements for all fan applications.
For example, a ceiling fan may have all these require-
ments, whereas retrograde motion may be acceptable
in a kitchen-hood fan as it is concealed. It may still have
a requirement to catch the speed on-the-fly in case of
a power Reset. IPD (discussed in the “Initial Position
Detection (IPD)” section) and windmilling (discussed
in the “Windmilling” section) can address these sets
of requirements.
 2019 Microchip Technology Inc. DS90003220A-page 5
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Figure 5 shows the current waveform for a fan that is
stopped while windmilling and then smoothly restarted
in the opposite direction.

FIGURE 5: WINDMILLING: FAN MOTOR 
CURRENT 

AIR CONDITIONERS AND REFRIGERATORS

Air conditioners and refrigerators have motor-driven
compressors as a major component of their system,
which enables heat exchange. Due to pressure varia-
tions during a compression cycle, the compressor
loads the motor unevenly causing vibrations in the
motor, compressor and pipes. These vibrations cause
the pipes to fatigue and can lead to premature failure.

These vibrations should be minimized, especially at
low motor speeds. At high speeds, the motor, compres-
sor and pipes react less due to their typical mechanical
responses. This requirement can be met by using the
torque compensation algorithm discussed in the
“Torque Compensation” section.

FIGURE 6: TORQUE COMPENSATION: 
COMPRESSOR VIBRATIONS 

WASHING MACHINES

Washing machines are applications that have a combi-
nation of high inertia of the machine and the possibility
of the motor running at a very high speed. When a
washing machine is running in spin-dry mode, if a stop
command is received, the application has to stop the
motor safely to avoid a DC bus voltage surge. For more
information, refer to the “Soft Stop” section.

Figure 7 shows the current waveform for a washing
machine using a soft start algorithm to prevent a DC
bus overvoltage condition.

FIGURE 7: SOFT STOP: WASHING 
MACHINE MOTOR CURRENT

CONCLUSION

As understood in the previous sections of this document,
the algorithms and usage examples demonstrate their
capabilities in achieving energy efficiency, durability and
robustness of PMSM-driven appliances, such as fans,
washing machines, refrigerators and air conditioners.
These algorithms have been demonstrated in Microchip
dsPIC® DSC devices and can be extended to other
PMSM-based applications.
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NOMENCLATURE

The following table lists the symbols and constants
quoted in this document. 

REFERENCES

• AN1078, “Sensorless Field Oriented Control of a 
PMSM”

• AN1292, “Sensorless Field Oriented Control 
(FOC) for a Permanent Magnet Synchronous 
Motor (PMSM) Using a PLL Estimator and Field 
Weakening (FW)”

• “Speed Estimators, Flux Weakening and Efficient 
Use of SPMSM and IPMSM” – Prasad Kulkarni, 
20089 MC7, Microchip MASTERs Conference 
2016

• “Motor Control for White Goods Applications” – 
Prasad Kulkarni, 21095 MC5, Microchip 
MASTERs Conference 2017

• “Closed Loop Flux Weakening for Permanent 
Magnet Synchronous Motors” – P. Kulkarni, 
R. Kankanala, D. Deb, U.S. Patent 10 008 967, 
Jun. 26, 2018

• “Closed Loop Torque Compensation for 
Compressor Applications” – P. Kulkarni, D. Deb, 
R. Kankanala, U.S. Patent filed on Dec. 17, 2017, 
MTI Ref.: 5929.US.0, U.S. Application 
Number: 15/844,569

TABLE 1: NOMENCLATURE

rs Stator Resistance

Lds D-Axis Stator Inductance (Lds < Lqs)

Lqs Q-Axis Stator Inductance

PM Motor Back EMF (BEMF) Constant

V Applied Voltage along Phase ‘a’

V Applied Voltage Quadrature to Phase ‘a’

I Stator Current along Phase ‘a’

I Stator Current Quadrature to Phase ‘a’

E BEMF along Phase ‘a’

E BEMF Quadrature to Phase ‘a’

Ref Rotor Reference Speed

 Rotor Speed

 Estimated BEMF Angle

IdsRef Reference Stator Current along D-Axis

IqsRef Reference Stator Current along Q-Axis

Ids Stator Current along D-Axis

Iqs Stator Current along Q-Axis

Vdc Sensed DC Link Voltage
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