

Go with Gate Drive Optocoupler

Contents

- Isolation Technologies and Comparisons
- Robust and reliable optical isolation technology
- Leading gate drive solutions for industrial applications
- **Product Selection Trees**
- Driving SiC and GaN power semiconductors
- 10 Reference designs for SiC and GaN power semiconductors
- Improve motor lifetime with slew rate control gate driver
- Functional safety for motor drive 16
- New product highlights 18
- 22 Product Selection

Isolation Technologies and Comparisons

Isolator / Coupler Types	Broadcom Optocoupler Emitter Chip Kapton Tape	Magnetic Isolator	Capacitive Isolator Caps Caps SiO,
Isolation Construction	Detector Chip Faraday Shield	Polyimide	
Insulation Material	3 layers (Silicone / Kapton / Silicone)	1 layer (Polyimide)	1 layer (Silicon Dioxide)
Insulation Thickness	0.08mm to 2mm	Up to -0.02mm for single coil; -0.04mm for double coil	Up to -0.014mm for single cap; -0.028mm for double cap
Insulation Strength	Very Good	Fair	Weak
Component Certification Test Method	IEC-60747-5-5 (reinforced - passed min. 10kV surge) Partial Discharge	IEC-60747-17 (basic or reinforced - passed Partial Discharge Lifetime failure mechanism , in type test	9 ,
Lifetime and Reliability Failure Mechanism	Partial Discharge No lifetime failures - guaranteed by 100% PD test at final production test (VDE option)	Space Charge Degradation Allowable failure in time Reinforced < 1 ppm Basic < 1,000 ppm	TDDB Allowable failure in time Reinforced < 1 ppm Basic < 1,000 ppm
Insulation Vulnerability	Robust thick insulation with proven track record	Thin film insulation vulnerab stress. Insulation damage du early TDDB	
UL1577 V _{iso} Withstand Voltage	Double Protection (Passed Type Test min. 20kV 50 discharges)	Single Protection	Single Protection
EMI/EMC	Very Good (Faraday Shield	Weak	Fair

Optocoupler is the dominant isolation technology in the industry

Susceptibility

implemented at

detector side)

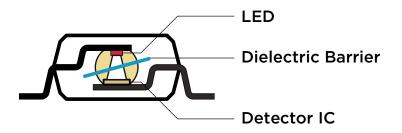
- Optical isolation is preferred choice for high voltage isolation and better noise immunity performance
- Optical isolation technology proven track record of more than 50 years
- Roadcom Isolation Products currently not supporting IEC60747-17

- X IEC-60747-17 currently only recognizes Polyimide and Silicon Dioxide as the insulation materials

Robust and reliable optical isolation technology enables high noise rejection and safety

Optical Isolation Technology

Figure 2 shows the construction of a Broadcom optical isolator. An infrared LED on the primary side is used to transmit information across the multi-layer insulation barrier to a detector IC over the galvanically isolated secondary side.


The use of optical isolation technology allows for an optimum design tradeoff between low power consumption and separation distance.

The multi-layer and large distance through insulation (DTI) are keys to (common mode) noise rejection and insulation capability in high voltage environments. They are also keys to the protection of the insulation barrier from external fault events. The white paper "Robust Construction of the Optoisolator" explains how power supply fault can damage the on-chip capacitive isolator that use same monolithic IC process.

Common Mode Transient Immunity (CMTI)

The internal separation and Faraday shield covering the detector IC reduces the coupling capacitance across the isolator. This low capacitance, combined with optical isolation technology provide leading industry CMTI performance of up to $150 \text{kV/}\mu\text{s}$.

Figure 2. Optical isolator construction

Reinforced insulation suitable for failsafe design

Robustness to Long Term High Voltage Stress

As isolators are often used in applications with specific electrical safety requirements, it is extremely important to ensure – by construction and testing - that the insulation capability of products do not degrade over time when subjected to high continuous or transient voltages.

The relevant aging mechanism used for the insulation construction in optical isolators, presented in this booklet is called **Partial Discharge**. All Broadcom gate drive optocouplers (or with VDE option) have 100% partial discharge testing at the rated working and transient voltages.

Other known aging mechanisms, such as space charge degradation (thin spin-on polyimides) or time dependent break down (SiO_2) are not activated or applicable to Broadcom optically isolated products.

More information on safety and isolation technologies can be found in the Broadcom white paper "Safety Considerations When Using Optocouplers and Alternative Isolators for Providing Protection Against Electrical Hazards".

Resistance to ESD and Other High Voltage Transients

One important aspect of an isolator is the transient voltage rejection, not only between inputs and ground but also between the two isolated grounds. The surge test for Broadcom optocouplers, measured across the isolation barrier is > 16kV.

Reliability and Quality of LEDs

The LEDs used in Broadcom gate drive optocouplers are dimensioned so that they pose no limitation on the end product life time. The infrared LED technology used for optocouplers is a core competency for Broadcom that has been developed over 50 years. Broadcom continues to do R&D and LED production in house to maintain it's technological leadership, reliability and quality.

Gate drive optocouplers, whose performance and reliability depend on quality LED technology, are available in industrial and automotive grade (125°C), and space/military grade (hermetic, 125°C) versions.

Leading gate drive solutions for industrial applications

Target Applications

- IGBT, SiC and GaN MOSFET gate drive
- AC and servo motor drives
- Renewable energy inverter and storage
- Robotics and factor automation
- Heating, ventilation and air conditioning
- Power supply

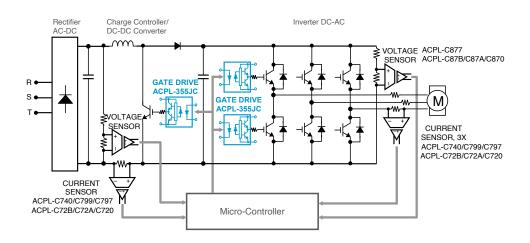
Broadcom optocouplers have been used in an array of isolation applications ranging from power supply and motor control circuits to data communications and digital logic interface circuits for more than 50 years.

The primary purpose of an optocoupler is to provide both electrical insulation and signal isolation. The popularity of Broadcom optocouplers is due to cost effective innovations in these areas.

In typical motor drive and renewable energy power conversion systems, there are several signals between the power devices and the microcontroller that need isolation and additional customized functions such as gate drive and current/voltage sensing. Broadcom's gate drive optocouplers provide low cost, high performance solutions for such applications.

GO with OPTO! BROADCOM® OPTOCOUPLERS 50 YEARS

Highly integrated gate drive optocouplers


Introduction

High performance motor drives require precision timing for turning on and off the power devices on the inverter while renewable energy inverter needs to be reliable and efficient when converting DC-link voltage to usable AC power output. The microcontroller that controls these functions needs to be isolated from the high voltage inverter.

Broadcom offers a variety of optocouplers that have built-in gate drive capability. These gate drive optocouplers come in wide range of output current from 0.4A to 12A, and selected parts with integrated protection features such as slew rate control, short circuit or over-current detection, functional safety reporting, active Miller clamp and under voltage lockout.

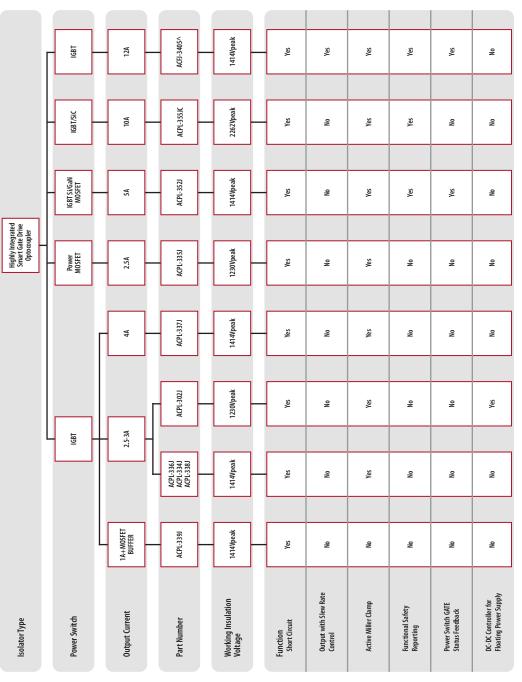
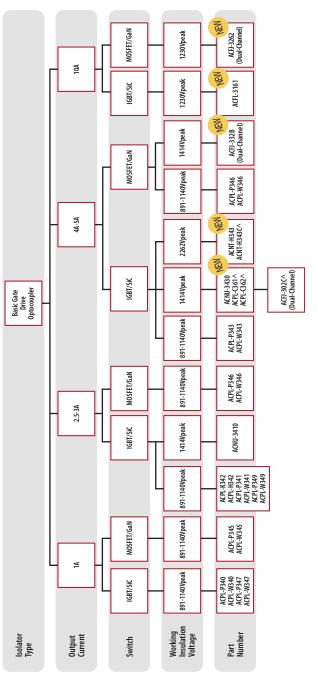

Beside protection features, Broadcom has also integrated DC-DC controller for floating power supply and LED driver to make design more compact and affordable.

Figure 1. Gate drive optocouplers in a three phase motor drive application


Product Selection Trees

Highly Integrated Smart Gate Drive Optocoupler NPI Product Tree

[^]Advance information subject to change

Basic Gate Drive Optocoupler NPI Product Tree

Driving SiC and GaN power semiconductors

The rise of SiC and GaN power semiconductors

SiC and GaN are now widely recognized as a reliable alternative to silicon IGBT. Their ability to increase overall system efficiency and switching speed can help reduce the overall system size and costs. Major suppliers are ramping up their production with packages and pinouts that can replace existing IGBTs easily. This drives the costs of SiC and GaN power semiconductors to a very competitive level, which is probably the most important factor that makes adoption take off.

The standardization of SiC and GaN power semiconductors

SiC and GaN power semiconductors specifications have evolved to be easily driven and protected by gate drivers.

The first specification would be gate-source voltage, $V_{\rm GS}$. The optimum $V_{\rm GS}$ for SiC FET operations has reduced from 20V to the same level as the $V_{\rm GE}$ of IGBTs, at 15 V. Likewise, the $V_{\rm GS}$ of GaN FET has increased from 4V to 10V, the same level as silicon power MOSFET. The difference in $V_{\rm GS}$ will require the output of gate driver to have different under voltage lockout(UVLO) threshold.

The second specification is the total gate charge, $Q_{\rm G}$. $Q_{\rm G}$ of SiC and GaN FETs is more than 2 to 3 times smaller to their equivalent silicon counterparts. This allows them to switch quickly, reducing the switching losses and increasing the operating frequency. A lower $Q_{\rm G}$ also implies a lower gate current, which helps to eliminate a current buffer stage.

The third specification is the slew rate or dv/dt which measures how fast the SiC & GaN FETs switch from zero to the BUS voltage within the shortest time. Although fast switching is critical to reduce switching losses, the high dv/dt generated can be a nuisance and causes noise to the control. The ability for the gate driver to reject the dv/dt noise is specified by the common mode transient immunity (CMTI). SiC and GaN FETs are capable to switch 100 V/ns and requires a gate driver with CMTI rating of more than 100 kV/ μ s.

The last specification is the short circuit withstand time (SCWT). Silicon IGBTs in general have superior SCWTs to SiC or GaN FETs. Hence, any short circuit fault current in the SiC FET needs to be extinguished faster before the switch is destroyed. Typically, the rule of thumb is 1 to 3 μ s for SiC and GaN FETs, as compared to 5 to 10 μ s for IGBTs.

Gate drive optocouplers for SiC and GaN power semiconductors

With the understandings of gate-source voltage, gate charge, slew rate and short circuit withstand time, table 1 shows the gate drive optocouplers and their specifications suitable for driving SiC or GaN power semiconductors. It is to note that these gate drivers can be used to drive the silicon counter parts of IGBT and power MOSFET.

Table 1. Power semiconductors and gate drive optocouplers

Power Semiconductor			CMTI (kV/µs)	Features	
	ACPL-355JC	13V	10A	100	DESAT sensing with adjustable blanking time for SCWT
SIC MOSFET IGBT	ACFL-3161	13V	10A	100	Separate source and sink outputs
	ACFJ-302C	12V	4A	150	Active Miller Clamp
GaN FET	ACFJ-3262	8V	10A	100	Separate source and sink outputs
Power MOSFET	ACFJ-332B	8V	4A	150	Active Miller clamp

Reference designs for SiC and GaN power semiconductors

Broadcom develops reference designs to help customers shorten design cycle and speed up time-to-market. Broadcom has partnered with key SiC and GaN FETs suppliers or our channel partners who have in depth system and product knowledge in their respective field, for most of the reference designs. The SiC and GaN FETs reference designs include schematics, layouts, BOMs and test results to demonstrate best engineering and industrial practices.

www.broadcom.com/products/optocouplers/reference-designs

Figure 3. Reference designs for SiC and GaN power semiconductors

ACPL-355JC

Infineon

62mm SiC 1200/350A-500A Module

- FF2MR12KM1
- FF3MR12KM1
- FF6MR12KM1

ACPL-355JC

Wolfspeed

62mm SiC 1200/300A-400A Module

- WAB300M12BM3
- WAB400M12BM3

ACPL-355JC

Infineon

Half-Bridge 1200V SiC module

- FF23MR12W1M1 B11
- FF11MR12W1M1 B11

ACPL-355JC

Wolfspeed

FM3 Half-Bridge 1200V SiC module

- CAB011M12FM3
- CAB016M12FM3

ACFL-3161

STM, Wolfspeed and Nexperia

TO247 1200V SiC Discreet

- SCTWA70N120G2V
- C3M0021120K
- NSF080120L4A0

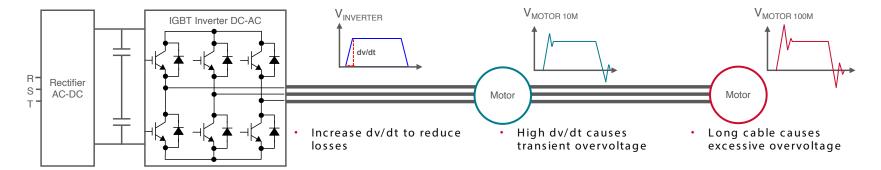
ACFJ-3262

Nexperia

CCPAK 650V GaN Discreet

• GAN039-650NBB

ACFJ-332B


Transphorm

TOLL 650V SuperGaN FET Discrete

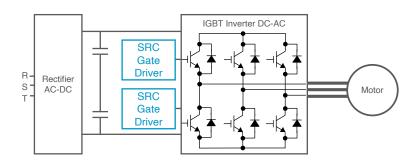
• TP65H035G4QS

Improve motor lifetime with slew rate control gate driver

Figure 4. High dv/dt causes excessive overvoltage with long cable between drive and motor

Excessive overvoltage with long cable between drive and motor

Pulse-width modulation or PWM is a method of reducing the average power delivered by an electrical signal, by effectively converting analog to digital signals. To keep the losses in the inverter low, the switching times of the power semiconductors are kept as short as possible.


This results in the increase of slew rate or dv/dt, especially with the new generation of IGBTs. In many industrial applications, induction motor and inverter are placed at different locations and need long cable connection. The high dv/dt of the inverter output pulses, through the long cable, doubles at motor terminal due to voltage reflection phenomena.

The overvoltage appearing across the motor terminal stresses the motor insulation and finally leads to motor insulation failure.

According to IEC and NEMA standards of admissible voltages for various motor type, a dv/dt of around 5kV/us is considered permissible for most application.

Slew rate control gate driver

Figure 5. Slew rate control gate driver

The most commonly used dv/dt mitigating technique is a passive dv/dt filter between the inverter and motor. The passive dv/dt filter consisting of inductor, capacitor and resistor slow down the PWM and reduce the dv/dt. Such passive filters are usually large, expensive and cause losses.

Slew rate control (SRC) gate driver offers a simple, small and cost-effective alternative to dv/dt filter. Based on IGBT current feedback loop, the gate driver will control its output current dynamically through the gate resistors. By varying the gate resistors, the dv/dt of the IGBT can be controlled and not to exceed the permissible dv/dt.

Slew rate control gate drive optocoupler

The operation of slew rate control gate drive optocoupler

Figure 6. The operation of slew rate control gate driver

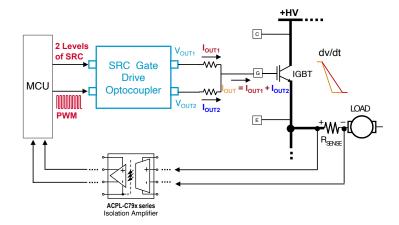


Figure 6 shows typical application diagram of the slew rate control(SRC) gate driver. The SRC gate drive optocoupler receives the PWM and SRC signals from the microcontroller. The PWM signals is then transmitted to across the isolation barrier of the gate driver. The SRC signal will then select the outputs, V_{OUTI} or V_{OUTI} , in which the PWM signal will be sent to the gate of the IGBT. The microcontroller decides which mode of SRC levels based on the feedback of the IGBT or load current.

Figure 7 maps the IGBT current, I_c to the required gate current, in order to keep the dv/dt below the permissible dv/dt of 5kV/us. At low IGBT current, for example 40A, the gate driver will deliver a low output current, $I_{\rm OUTI}$ to keep the IGBT slew rate at 2500V/us. On the other hand, in a design without slew rate control, a high gate current might cause the dv/dt to exceed the permissible limits at 5kV/us at 40A.

When the IGBT is switching at a higher current, for example 120A. The gate driver will deliver a higher gate current, $I_{\text{OUTI}} + I_{\text{OUT2}}$, to switch the IGBT at a higher slew rate but still within the permissible target. But doing do, the dv/dt will be higher but optimized (green dotted line), to reduce the switching losses.

Figure 7. The relationship of dv/dt, IGBT current(IC) and gate current

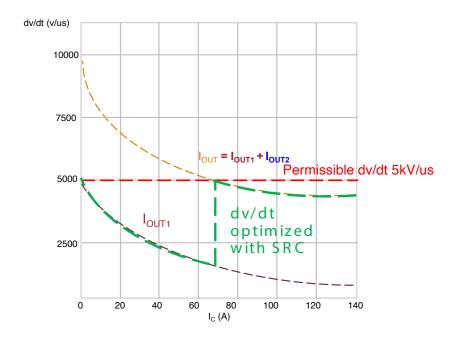
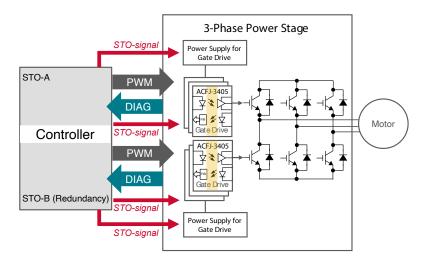


Table 2. Gate drive optocouplers with slew rate control


Gate Drive Optocoupler	Selectable Output Current (max.)	Other Features
^ACFJ-3405	12A, 4A	DESAT detection with soft shut down Adaptive DESAT blanking Deadtime control Functional safety
^ACPL-C361	5A, 2.5A	-
^ACPL-C362	5A, 2.5A	Active Miller clamp

[^] Advance information subject to change.

Functional safety for motor drive with ACFJ-3405

Safe Torque Off (STO)

Figure 8. Motor drive functional safety with STO-signal

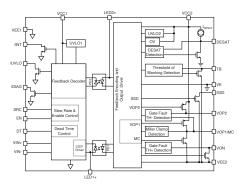
Motor drive functional safety standard, IEC 61800-5-2 defines STO (Safe Torque Off) as the function to prevent force producing power to be provided to the motor. Two of such functions are:

- Function to disable power supply to gate drive
- Function to disable gate drive at the power stage

STO-signal can be sent to these two functions to stop the motor if faults at the power supply or the power stage are detected. The ACFJ-3405, slew rate control gate driver, has integrated functional safety features which can provide diagnostic(DIAG) feedbacks for the controller to issue the necessary STO-signal.

Table 3. ACFJ-3405 features for functional safety

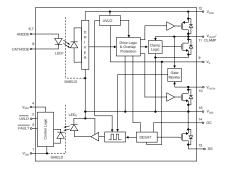
Power Suppl	у		
ACFJ-3405 Features	Description of Fault and Actions	DIAG Signal	STO-Signal
UVLO2	V _{CC2} under voltage. Gate driver locks output and reports status.	/UVLO /DIAG	Disable secondary power supply
OV2	V _{cc2} overvoltage. Gate driver reports status.	/UVLO	Disable secondary power supply
UVLO1	V _{CCI} under voltage. Gate driver ignores PWM signal and reports status.	/UVLO	EN - Disable gate drive to prevent faulty primary IC PWM signal from driving LED1
Power Stage			
DESAT	Short circuit faults at the IGBT or Motor causing IGBT to desaturate. Gate driver softshuts IGBT and reports status.	/INT	EN - Disable gate drive to prevent damaging other IGBTs and motor
Gate Fault	Gate(Input) of IGBT is at different logic vs PWM signal. IGBT is not switching according to PWM. Gate driver reports status.	/DIAG	EN - Disable gate drive to prevent IGBT from driving the motor wrongly


The ACFJ-3405 also has a built-in self test (BIST) feature to check the integrity of the DIAG feedbacks. If the LEDs of the PWM or DIAG signaling are not working, LED faults will also be feedback to the controller via /DIAG signal.

New product highlights - smart gate drive optocouplers

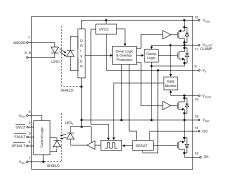
^ACFJ-3405

Slew rate control & functional safety


- 2-level(4A & 12A) of output drive
- Adaptive DESAT blanking
- DESAT detection with Soft shutdown protection and fault feedback
- Dead time control
- Gate status fault feedback
- UVLO/OV feedback
- Built-in Self-Test for LED1 & LED2
- -40°C to +125°C operating temperature

ACPL-355JC

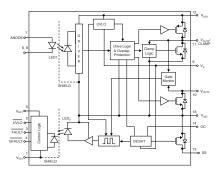
10A peak output current


- CTI > 600V, material Group I package
- V_{IORM}=2262V_{PEAK} continuous working voltage
 Over current FAULT protection & feedback
- UVLO & feedback
- Integrated active Miller clamp
- CMTI >100 kV/μs

ACPL-352JC

5A peak output current

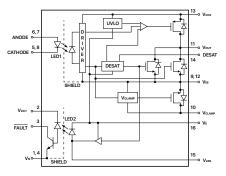
- Rail-to-rail dual output
- Over current FAULT protection & feedback
- UVLO & feedback
- Gate status fault feedback
- Adjustable soft shut
- Integrated active Miller clamp
- CMTI >100 kV/us



^ Advance information subject to change.

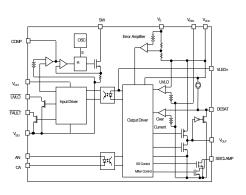
ACPL-339J

To drive external MOSFET buffer


- · Dual rail-to-rail output
- 1A peak output current
- Active timing control to prevent cross conduction in MOSFET buffer
- DESAT and UVLO detection with isolated fault feedback
- Adjustable soft shut down

ACPL-334J/338J

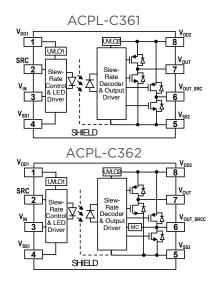
3A peak output current


- Pin-to-pin drop-in to ACPL-332J/331J and ACPL-333J/330J
- Integrated active Miller clamp
- CMTI >100 kV/µs
- -40°C to +125°C operating temperature range

ACPL-302J

Integrated flyback controller for isolated DC-DC converter

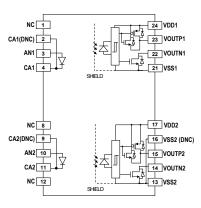
- 2.5 A peak output current
- · Rail-to-rail output voltage
- DESAT and UVLO detection with isolated fault feedback
- Integrated active Miller clamp



New product highlights - basic gate drive optocouplers

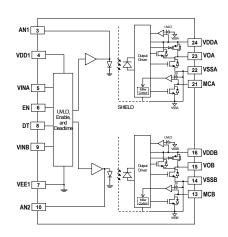
^ ACPL-C361/C362

Slew rate control & miller clamp


- 2-level ON/OFF (2.5A & 5A) of output drive
- Compact SSO-8 package
- ACPL-C362 integrated with active miller clamp
- CMTI >100 kV/μs
- -40°C to +125°C operating temperature

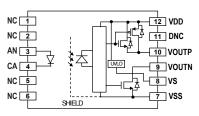
ACFJ-3262

Dual Channel 10A peak output current


- Dual channel gate drive
- Separate source and sink pins
- Direct LED input
- Fast propagation delay >95ns
- 2.8-mm creepage between 2 output drivers
- CMTI >100 kV/μs
- CTI > 600V, material Group I package
- -40°C to +125°C operating temperature

^ ACFJ-332B/302C

Dual Channel 4A peak output current with dead time control


- Dual channel gate drive
- Programmable dead time
- Fast propagation delay >65ns
- EN pin for enhanced safety
- Integrated active Miller clamp
- 3.5-mm creepage between 2 output drivers
- V_{IORM} =1414 V_{PEAK} continuous working voltage
- High CMTI >150 kV/μs
- -40°C to +125°C operating temperature
- UVLO options
- ACFJ-332B = 8V
- ACFJ-302C = 12V

ACFL-3161

Single Channel 10A peak output current

- Separate source and sink pins
- Direct LED input
- Fast propagation delay >95ns
- CMTI >100 kV/μs
- CTI > 600V, material Group I package
- -40°C to +125°C operating temperature

[^] Advance information subject to change.

Smart Gate Drive Product Selection

Part No.	Package	I _{F(ON)}	I _{out}	I _{out}	t _{plH}	t _{PHL}	P _{DD}	V _{cc}	CMR - V	μs@V _{см}	V _{ISO}	V _{IORM}		
		mA Min.	A Min.	A Max.	μs Max.	μs Max.	μs Max.	V Max.	CMR V/µs (Min.)	V _{CM}	V _{RMS} Min.	V _{PEAK}		
N ACFJ-3405^	SO24		10	12	0.14	0.14	0.06	30	30000	1000	5000	1414		
	- Level 1 = - Level 2 = - Integrated D - Functional s - Adaptive DE - 4A active Mi	- 2-Level output for slew rate control - Level 1 = 4A max Level 2 = 12A max Integrated DESAT protection - Functional safety FAULT reporting - Adaptive DESAT blanking - 4A active Miller clamp - Deadtime control												
ACPL-355JC	SO16	8	7.5	10	0.14	0.14	0.075	30	100000	1500	5000	5000 2262 5000 1414 5000 1230 5000 1414		
	- 10A gate dri - High workin - Material gro - Integrated a - Over current	g insulation up I with 0 ctive Mille	on voltage CTI >600' er clamp	e of 2262' V	V _{PEAK}		porting							
- Over current and UVLO detection with functional safety repor	0.075	30	100000	1500	5000	1414								
	- SA max. pea - Rail-to-rail d - Low propag - SiC/GaN MC - Functional s - Integrated a	ual outpu ation dela SFET rea afety repo	t y (<150n: dy orting	5)										
ACPL-302J	SO16	10	-	2.5	0.25	0.25	0.16	25	30000	1500	5000	1230		
	Integrated EIntegrated sUnder VoltaIntegrated a	hort circu ge Locko	it protect ut (UVLO	ion and f	ault feedl	back								
ACPL-339J	SO16	6	1.0	-	0.30	0.30	0.2	30	25000	1500	5000	1414		
Scalable & Efficient gate drive design Dual Rail-to-Rail output to drive external MOSFET buffer Active timing control to prevent cross conduction in MOSFET buffer Integrated short circuit protection and fault feedback														
ACPL-337J	SO16	9	3.0	4.0	0.22	0.25	0.15	30	30000	1500	5000	1414		
ACPL-336J	SO16	9	2.0	2.5	0.22	0.25	0.15	30	30000	1500	5000	1414		
	- Rail-to-rail o - Integrated s - Under Volta - Integrated a	hort circu ge Locko	it protect ut (UVLO) protecti	ion with f									
ACPL-335J	SO16	10	2.5	2.0	0.25	0.25	0.10	20	50000	1500	5000	1230		
	- 2.5A MOSFE - UVLO thresl - Over curren - Hard shut de	nold for M t threshol	OSFET p	rotection SFET prof	tection									

	Part No.	Package	I _{F(ON)}	I _{out}	I _{out}	t _{PLH}	t _{PHL}	P _{DD}	V _{cc}	CMR - V/	μs@V _{см}	V _{iso}	VIORM	
			mA Min.	A Min.	A Max.	μs Max.	μs Max.	μs Max.	V Max.	CMR V/µs (Min.)	V _{CM}	V _{RMS} Min.	V _{PEAK}	
1	ACPL-334J ACPL-338J	SO16	8	2.0	3.0	0.135	0.135	0.005	30	100000	1500	5000	1414	
	7.C. E 3303	- ACPL-334J, drop-in replacement for ACPL-331J/ACPL-332J - ACPL-338J (auto-reset), drop-in replacement for ACPL-330J/ACPL-333J - 3A max. peak output current - Rail-to-rail output40°C to +125°C operating temperature range												
	ACPL-333J	SO16	8	2.0	2.5	0.25	0.25	0.15	30	50000	1500	5000	1414	
	ACPL-332J	2.5A highly integrated gate drive optocoupler with active Miller clamp, over-current protection and fault feedback - Under Voltage Lockout (UVLO) protection with Hysteresis - Automatic fault reset after fixed delay time (for ACPL-333J-000E only)												
l	ACPL-331J	SO16	8	1.0	1.5	0.25	0.25	0.15	30	50000	1500	5000	1414	
	ACPL-330J	- 1.5A highly integrated gate drive optocoupler with active Miller clamp, over-current protection and fault feedback - Under Voltage Lockout (UVLO) protection with Hysteresis - Automatic fault reset after fixed delay time (for ACPL-330J-000E only)												
ĺ	HCPL-316J	SO16	-	2.0	2.5	0.5	0.5	0.3	30	15000	1500	5000	1414	
		- 2.0A highly - CMOS com - Under Volta	patible			·			tection a	and fault fee	dback			

[^] Advance information subject to change.

Basic Gate Drive Product Selection

	Part No.	Package	I _{F(ON)}	I _{out}	I _{out}	t _{plH}	t _{phL}	P _{DD}	V _{cc}	CMR - V/	μs@V _{см}	V _{iso}	V _{IORM}
			mA Min.	A Min.	A Max.	μs Max.	μs Max.	μs Max.	V Max.	CMR V/µs (Min.)	V _{CM} V	V _{RMS} Min.	V _{PEAK}
VEW	ACPL-C361 [^]	Stretched SO8	-	2.1	4.2	0.16	0.16	0.06	30	100000	5000	5000	1414
VEW	ACPL-C362 [^]	Stretched SO8	-	2.1	4.2	0.16	0.16	0.06	30	100000	1500	5000	1414
EW	ACFL-3161	SO12	10	6.0	10	0.095	0.095	0.035	30	100000	1000	5000	1230
EW	ACNT-H343 ACNT-H343C^	15mm Stretched SO8	12	4.0	5.0	0.15	0.15	0.09	30	100000	1500	7500	2262
	ACNU-3430	11mm SSO8	7	4.0	5.0	0.15	0.15	0.09	30	100000	1500	5000	1414
	ACNU-3410	11mm SSO8	7	2.5	3.0	0.15	0.15	0.09	30	100000	1500	5000	1414
	ACNW-3430	400 mil DIP	8	4.0	5.0	0.15	0.15	0.09	30	100000	1500	5000	1414
	ACNW-3410	400 mil DIP	8	2.5	3.0	0.15	0.15	0.09	30	100000	1500	5000	1414
	ACNT-H313	15mm Stretched SO8	7	2.0	2.5	0.5	0.5	0.35	30	40000	2000	7500	2262
	ACNV-3130	500 mil DIP	12	2.0	2.5	0.5	0.5	0.35	30	40000	1500	7500	2262
	ACPL-P349	Stretched SO6	7	2.0	2.5	0.11	0.11	0.05	30	100000	1500	3750	891*
	ACPL-W349	Stretched SO6	7	2.0	2.5	0.11	0.11	0.05	30	100000	1500	5000	1140*
	ACPL-P346	Stretched SO6	7	2.0	2.5	0.12	0.12	0.05	20	100000	1500	3750	891*
	ACPL-W346	Stretched SO6	7	2.0	2.5	0.12	0.12	0.05	20	100000	1500	5000	1140*
	ACPL-P347	Stretched SO6	7	0.8	1.0	0.11	0.11	0.05	30	100000	1500	3750	891*
	ACPL-W347	Stretched SO6	7	0.8	1.0	0.11	0.11	0.05	30	100000	1500	5000	1140*
	ACPL-P345	Stretched SO6	7	0.8	1.0	0.12	0.12	0.05	20	100000	1500	3750	891*
	ACPL-W345	Stretched SO6	7	0.8	1.0	0.12	0.12	0.05	20	100000	1500	5000	1140*
	ACPL-P343	Stretched SO6	7	3.0	4.0	0.20	0.20	0.1	30	35000	1500	3750	891*
	ACPL-W343	Stretched SO6	7	3.0	4.0	0.20	0.20	0.1	30	35000	1500	5000	1140*
	ACPL-P341	Stretched SO6	7	2.5	3.0	0.20	0.20	0.1	30	35000	1500	3750	891*
	ACPL-W341	Stretched SO6	7	2.5	3.0	0.20	0.20	0.1	30	35000	1500	5000	1140*
	ACPL-P340	Stretched SO6	7	0.8	1.0	0.20	0.20	0.1	30	35000	1500	3750	891*
	ACPL-W340	Stretched SO6	7	0.8	1.0	0.20	0.20	0.1	30	35000	1500	5000	1140*
	ACPL-H342	Stretched SO8	7	2.0	2.5	0.35	0.25	-0.2	30	40000	1500	3750	891*
	ACPL-K342	Stretched SO8	7	2.0	2.5	0.35	0.25	-0.2	30	40000	1500	5000	1140*
	ACPL-312U	300 mil DIP	7	2.0	2.5	0.5	0.5	0.35	30	25000	1500	3750	630
	ACPL-H312	Stretched SO8	7	2.0	2.5	0.5	0.5	0.35	30	15000	1500	3750	891*
	ACPL-K312	Stretched SO8	7	2.0	2.5	0.5	0.5	0.35	30	15000	1500	5000	1140*

Part No.	Package	I _{F(ON)}	I _{out}	I _{out}	t _{PLH}	t _{PHL}	P _{DD}	V _{cc}	CMR - V/	μs@V _{см}	V _{iso}	V _{IORM}
		mA Min.	A Min.	A Max.	μs Max.	μs Max.	μs Max.	V Max.	CMR V/µs (Min.)	V _{CM}	V _{RMS} Min.	V _{PEAK}
ACPL-P302	Stretched SO6	7	0.2	0.4	0.7	0.7	0.5	30	10000	1000	3750	891*
ACPL-P314	Stretched SO6	8	0.4	0.6	0.7	0.7	0.5	30	25000	1000	3750	891*
ACPL-W302	Stretched SO6	7	0.2	0.4	0.7	0.7	0.5	30	10000	1000	5000	1140*
ACPL-W314	Stretched SO6	8	0.4	0.6	0.7	0.7	0.5	30	25000	1000	5000	1140*
ACNW3190	400 mil DIP8	10	4.0	5.0	0.5	0.5	0.3	30	15000	1500	5000	1414
ACNW3130	400 mil DIP8	10	2.0	2.5	0.5	0.5	0.35	30	40000	1500	5000	1414
ACPL-3130	300 mil DIP8	7	2.0	2.5	0.5	0.5	0.35	30	40000	1500	3750	630*
ACPL-J313	300 mil DIP8	7	2.0	2.5	0.5	0.5	0.35	30	40000	1500	3750	1230
ACPL-T350	300 mil DIP8	7	2.0	2.5	0.5	0.5	0.35	30	15000	1500	3750	630*
HCNW3120	400 mil DIP8	10	2.0	2.5	0.5	0.5	0.3	30	25000	1500	5000	1414
HCPL-J312	300 mil DIP8	7	2.0	2.5	0.5	0.5	0.35	30	25000	1500	3750	1230
HCPL-J314	300 mil DIP8	8	0.4	0.6	0.7	0.7	0.5	30	25000	1500	3750	891
HCPL-T250	300 mil DIP8	7	0.5	1.5	0.5	0.5	-	30	5000	600	3750	630*
HCPL-T251	300 mil DIP8	8	0.1	0.4	1.0	1.0	-	30	10000	600	3750	-
HCPL-0302	S08	7	0.2	0.4	0.7	0.7	0.5	30	10000	1000	3750	566*
HCPL-0314	S08	8	0.4	0.6	0.7	0.7	0.5	30	25000	1000	3750	566*
HCPL-3020	300 mil DIP8	7	0.2	0.4	0.7	0.7	0.5	30	10000	1000	3750	630*
HCPL-3120	300 mil DIP8	7	2.0	2.5	0.5	0.5	0.35	30	25000	1500	3750	630*
HCPL-3140	300 mil DIP8	8	0.4	0.6	0.7	0.7	0.5	30	25000	1000	3750	630*
HCPL-3150	300 mil DIP8	7	0.5	0.6	0.5	0.5	0.35	30	15000	1500	3750	630*
HCPL-3180	300 mil DIP8	10	2.0	2.5	0.2	0.2	0.09	20	10000	1500	3750	630*
ACFJ-3262	SSO24	4.2	6.0	10	0.095	0.095	0.025	25	100000	1000	5000	1230
ACFJ-332B (8V UVLO)	SSO24	0.16	2.4	4.0	0.065	0.065	0.03	25	150000	1500	5000	1414*
ACFJ-302C [^] (12V UVLO)	SSO24	0.16	2.4	4.0	0.065	0.065	0.03	25	150000	1500	5000	1414*
HCPL-314J	SO16	0.06	0.4	0.6	0.7	0.7	0.5	30	25000	1500	5000	1414
HCPL-315J	SO16	30	0.5	0.6	0.5	0.5	0.35	30	15000	1500	5000	1414

^{*}with IEC/EN 60747-5-5 Option 060.

[^] Advance information subject to change.

Optoisolation Products

Broadcom Inc. offers the industry's best optical isolation technology along with the industry's leading CMR performance. Broadcom also provides a broad range of isolation products with performance features and benefits that are unmatched in the industry for industrial, automotive and EV charging, renewable energy and storage, robotics, data center and mission critical power supply, communications, medical, military and aerospace markets.

Broadcom is focused on technology leadership and category-leading semiconductor and infrastructure software solutions. The company is a global leader in numerous product segments serving the world's most successful companies.

Broadcom combines global scale, engineering depth, broad product portfolio diversity, superior execution and operational focus to deliver category-leading semiconductor and infrastructure software solutions so its customers can build and grow successful businesses in a constantly changing environment.

Optocoupler Publications and Resources

Selection Guide Designer's Guide Regulatory Guide Application Notes and White Papers

Product Portfolio

- Multi-Channel Bi-Directional Digital Optocoupler
- High Speed Digital CMOS Logic Gate Optocoupler
- 20 MBd Logic Gate Optocoupler
- 10 MBd Logic Gate/ CMOS Optocoupler
- 8 MBd Logic Gate Optocoupler
- 5 MBd Logic Gate/CMOS Optocoupler
- 1 MBd Transistor Output Optocoupler
- 100 kBd Darlington Transistor Output Optocoupler
- Automotive Grade Optocoupler (R²Coupler[®])
- · Digital Isolator
- · Isolation Amplifier
- Fully Integrated, Hall Effect-Based Linear Current Sensor IC
- Integrated Gate Drive Optocoupler
- Intelligent Power Module Interface Optocoupler
- Industrial Photo MOSFET Relay and Photo Voltaic Driver Products
- Isolated Line Receiver
- Isolated 20 mA Current Loop Transmitter/Receiver
- Isolated Voltage/Current Detector
- · High Linearity Analog Optocoupler
- Wideband Analog/Video Optocoupler
- Hermetic High Performance Optocouplers

For more product information: broadcom.com

Copyright © 2025 Broadcom. All Rights Reserved. Broadcom, the pulse logo, Connecting everything, Avago Technologies, and R²Coupler are among the trademarks of Broadcom. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. 2 January 2025