

CoolSiC[™] – The perfect solution for servo drives Infineon's comprehensive portfolio for industrial drives applications

December 2020

Agenda

	Application requirements
2	System level benefits
3	Case study of IGBTs and CoolSiC™ MOSFETs for industrial drives
4	Auxiliary power supply
5	CoolSiC™ MOSFET evaluation boards
6	Industrial CoolSiC™ portfolio
7	Key takeaways

Agenda

	Application requirements
2	System level benefits
3	Case study of IGBTs and CoolSiC™ MOSFETs for industrial drives
4	Auxiliary power supply
5	CoolSiC™ MOSFET evaluation boards
6	Industrial CoolSiC™ portfolio
7	Key takeaways

Specific drives applications and motor types in the industry

Industrial Drives

- > Low voltage drives
 - > General purpose drives
 - > Servo drives
 - > C-HVAC
- > Medium voltage drives

Industrial automation

Industrial motor types

- Induction motor
- > Switched reluctance motor
- Permanent magnet synchronous motor
- > Servo motor
- > Brushed DC motor
- > Brushless DC motor

Industrial automation

Overview of three major areas in low voltage drives

- >

>

EconoPIM™

EconoDUAL™

PrimePACK™

CoolSiC™

MOSFETs

Requirements

- > Performance and reliability
- Safety features
- > Good price / performance ratio

Key applications

- > Pumps & fans
- > Process automation
- Cranes
- Marine drives

Infineon products

- > iMOTION™
- > CIPOS™ IPM >
- > EiceDRIVER™ >
- gate driver
- > EasyPIM[™]

	Servo drives	
o w	315 kW	

Requirements

37

- High positioning accuracy
- Fast response with no overshoot
- High reliability

Key applications

- > Robotics
- > Material handling
- Machine tools

Infineon products

- > CIPOS™ IPM
- > Discretes
- → EiceDRIVER™ → gate driver
- > EconoPACK™
- > EasyPACK™
 - EconoDUAL™
 - CoolSiC™ MOSFETs

Requirements

> Good price / performance ratio

75 kW

C-HVAC

Key applications

3 kW

 Commercial Heating & Ventilation Air-Conditioning (C-HVAC)

Infineon products

- > EconoPIM[™]
- > EasyPIM[™]
- > EiceDRIVER™ gate driver
- > CIPOS™ IPM
- > iMOTION™

Overview of medium voltage drives

XHP™ 3 >

Agenda

1	Application requirements
2	System level benefits
3	Case study of IGBTs and CoolSiC™ MOSFETs for industrial drives
4	Auxiliary power supply
5	CoolSiC™ MOSFET evaluation boards
6	Industrial CoolSiC™ portfolio
7	Key takeaways

CoolSiC[™] MOSFET - next generation of servo drives

CoolSiC[™] MOSFET in servo drives: conduction loss reduction in all operation modes

Typical load profile for a servo drive

- > High torque (current) in acceleration and breaking period
- > Low torque (current) in constant speed period
- > >90% time in low torque operation

Output characteristic comparison

CoolSiC[™] MOSFET reduces conduction loss in all operation modes

CoolSiC[™] MOSFET in servo drives: switching loss reduction

Switching loss reduction by using CoolSiC[™] MOSFET even at the same EMC level

Low Q_{rr} and No tail current

> Temperature independent switching losses

CoolSiC[™] MOSFET reduces switching loss in all operation modes

Total switching loss at 150°C, acceleration and breaking (20 A)

Agenda

1	Application requirements
2	System level benefits
3	Case study of IGBTs and CoolSiC™ MOSFETs for industrial drives
4	Auxiliary power supply
5	CoolSiC™ MOSFET evaluation boards
6	Industrial CoolSiC™ portfolio
7	Key takeaways

Infineon Proprietary

Case study of IGBTs and CoolSiC[™] MOSFETs for industrial drives

- > Easy module
 - TRENCHSTOP™ IGBT4
 - TRENCHSTOP™ IGBT7
 - CoolSiC™ MOSFET
 - dv/dt selection
 - Switching losses
- Application simulation

- Discrete device TO247
 - HighSpeed 3 IGBT
 - CoolSiC™ MOSFET
- dv/dt selection
- Switching losses
- Application simulation
- Application measurement

Case study: Easy package laboratory test configuration

Case study: Easy package defining the gate resistance

100% I_{nom} , 25°C \rightarrow Worst case for turn off \rightarrow Usually the off gate resistance can be smaller for 5 kV/µs

Case study: Easy package switching losses at R_G for 5 kV/µs

*Note that these graphs might not be 100% compatible with the following slides, due to systematic/random errors in measurement. Different dates/modules

Case study: Easy package input parameters

>	$V_{DC} = 600 V$	
---	------------------	--

- \rightarrow f_{out} = 50 Hz
- dv/dt₁₀₉₀ = 5 kV/µs
- > f_{SW} = 3 kHz (6 kHz SiC)
- > m_i = 1
- $\rightarrow \cos \varphi = 1$
- \rightarrow T_A = 50°C
- → τ_{thHA} = 60 s

Load profiles	Overload profile
Heavy duty at 50 Hz	12.5 A (100%) / 18.75 A (150%)
L des	IGBT

Module parameters	25 A IGBT4 Easy2B	25 A IGBT7 Easy2B	45 mΩ (25 A) SiC Easy1B
V _{CE,0} @25 A, 125°C	2.15 V	1.75 V	1.5 V
E _{on} + E _{off} + E _{rec} @ 25 A, 125°C dv/dt ₁₀₋₉₀ = 5 kV/μs	290 µJ/A	306 µJ/A	98 µJ/A
T _{vjop,max}	150°C	175°C	150°C

Case study: Easy package power losses – 50 Hz operation

Si or SiC – which technology is the better fit for servo drives

- SiC-MOSFET will not replace IGBT in most servo drives applications, if
 - Sufficient power semiconductor cooling is possible
 - Only moderate output frequencies are required $f_{out} < 800 \text{ Hz}$
- Conduction losses decrease significantly from IGBT4 technology to IGBT7.
- With SiC a reduction in switching losses is also possible, which would allow us to operate at higher switching frequencies.

Case study of IGBTs and CoolSiC[™] MOSFETs for industrial drives

- > Easy module
 - TRENCHSTOP™ IGBT4
 - TRENCHSTOP™ IGBT7
 - CoolSiC[™] MOSFET
- dv/dt selection
- > Switching losses
- > Application simulation

- HighSpeed 3 IGBT
- CoolSiC[™] MOSFET
- > dv/dt selection
- > Switching losses
- Application simulation
- Application measurement

Case study: discrete device - TO247 model and parameters

- > Three-phase voltage source inverter (B6) topology was used in order to understand the behavior of servo-drives
- ➤ Estimation of junction T_j performance and corresponding losses of the inverter for 1200 V CoolSiC[™] MOSFET vs HighSpeed 3 IGBT solutions
- > The simulation study was done based on experimental test results

Test/simulation conditions

 Simulation validation model of a three-phase voltage source inverter (B6) was used:

Based on calibration test results with following conditions:

 $V_{dc} = 600 \text{ V}, V_{N,out} = 400 \text{ V}, I_{N,out} = 5 \text{ A} - 25 \text{ A}, f_{N,sin-out} = 50 \text{ Hz},$ $f_{sw} = 4-16 \text{ kHz}, T_{amb} = 25^{\circ}\text{C}, \cos(\phi)_{N} = 0.9, R_{th,HA} = 0.63 \text{ K/W}, dv/dt = 5 \text{ V/ns}$

Thermal measurement of a servo-drive evaluation board

Case study: discrete device – TO247 Gate resistance R_G selection to assure < 5 V/ns

2020-12-01

Copyright © Infineon Technologies AG 2020. All rights reserved.

What is the benefit of CoolSiC[™] MOSFET at low switching frequency (4 kHz)?

Device temperatures of motor drive

Temperature Results at 5 V/ns

The motor drive conditions M=1, V_{dc} =600 V, f_{sin} =50 Hz, $R_G @ dv/dt$ =5 V/ns, f_{sw} =4-16kHz with cable length (C.L.) of 5 m, T_{amb} = 25°C

What is the benefit of CoolSiC MOSFET™ at higher switching frequency (8 kHz)?

Device temperatures of motor drive

Temperature Results at 5 V/ns

The motor drive conditions

M=1, V_{dc} =600 V, f_{sin} =50 Hz, $R_G @ dv/dt$ =5 V/ns, f_{sw} =4-16kHz with cable length (C.L.) of 5 m, T_{amb} = 25°C

What is the max f_{sw} of CoolSiC MOSFET™ at the same power and 4 kHz?

Temperature Results at 5 V/ns

The motor drive conditions

M=1, V_{dc}=600 V, f_{sin}=50 Hz, R_G @ dv/dt=5 V/ns, f_{sw}=4-16kHz with cable length (C.L.) of 5 m, T_{amb} = 25°C

$R_{DS(on)}$ selection example for various target requirements in a servo drive solution

CoolSiC[™] MOSFET enables fanless drives, higher currents for a given frame size, and more...

CoolSiC"

Application example with CoolSiC[™] MOSFET for integrated servo motors

Source: H. Weng, et al., "An integrated servo motor drive with self-cooling design by using SiC-MOSFET" Proc. PCIM Asia, 2020, in press

Inverter motor integration powered by Infineon products

A4 paper

This reference design orderable in Q4 2020:

• REF-DR3KIMBGSICMA

Also Evaluation boards orderable in Q4 2020:

- *REF_SIC_D2pak_MC*, with Miller Clamp function
- REF_SIC_D2pak_BP, with bipolar power supply and separated sink/source output

Agenda

1	Application requirements
2	System level benefits
3	Case study of IGBTs and CoolSiC™ MOSFETs for industrial drives
4	Auxiliary power supply
5	CoolSiC™ MOSFET evaluation boards
6	Industrial CoolSiC™ portfolio
7	Key takeaways

Auxiliary power supply with 1.7 kV CoolSiC[™] MOSFET

Possible applications

State-of-the-art solutions (Multiple 800 V of single 1500 V Si MOSFETs)

1.7 kV CoolSiC[™] MOSFET solution

Simple fly-back topology with low ohmic transistor

D²PAK 7L for 1700 V CoolSiC™ MOSFET

Perfect fitting gate voltage 0/12~15 V

Enhanced creepage and clearance distance ensure the device meets the high voltage standards with minimum design efforts

- > Comparing with multiple 800 V or single 1500 V Si MOSFET solutions:
 - Greatly reduces part counts \rightarrow BoM reduction
 - Higher voltage margin and lower device count \rightarrow increased reliability

Agenda

1	Application requirements
2	System level benefits
3	Case study of IGBTs and CoolSiC™ MOSFETs for industrial drives
4	Auxiliary power supply
5	CoolSiC™ MOSFET evaluation boards
6	Industrial CoolSiC™ portfolio
7	Key takeaways

CoolSiC[™] MOSFET evaluation boards

Board name	Description
EVAL-M5-IMZ120R-SIC	Motor drives inverter board with CoolSiC™ MOSFET in TO247 package
EVAL-M5-E1B1245N-SIC	CoolSiC™ MOSFET motor drives evaluation board for 7.5 kW in EasyPACK™ 1B package
EVAL-PS-E1BF12-SIC	Evaluation board for CoolSiC™ Easy1B half-bridge modules
EVAL_PS_SIC_DP_MAIN	CoolSiC™ MOSFET 1200 V in TO-247 3-/4-pin evaluation platform
REF_PS_SIC_DP1	Miller clamp function board for CoolSiC™ MOSFET 1200 V in TO-247 3-/4-pin evaluation platform
REF_PS_SIC_DP2	Bipolar supply function board for CoolSiC™ MOSFET 1200 V in TO-247 3-/4-pin evaluation platform
EVAL-1EDC20H12AH-SIC	Gate driver evaluation board with EiceDRIVER™ and CoolSiC™ MOSFET

Agenda

1	Application requirements
2	System level benefits
3	Case study of IGBTs and CoolSiC™ MOSFETs for industrial drives
4	Auxiliary power supply
5	CoolSiC™ MOSFET evaluation boards
6	Industrial CoolSiC™ portfolio
7	Key takeaways

CoolSiC[™] MOSFET 1200 V / 1700 V discrete

TO-247

R_{dson} [m Ω]	1200 V TO-247-3
30	IMW120R030M1H
45	IMW120R045M1
60	IMW120R060M1H
90	IMW120R090M1H
140	IMW120R140M1H
220	IMW120R220M1H
350	IMW120R350M1H

1200 V TO-247-4	
IMZ120R030M1H	
IMZ120R045M1	
IMZ120R060M1H	
IMZ120R090M1H	
IMZ120R140M1H	
IMZ120R220M1H	
IMZ120R350M1H	

EV-Chargin

SMD

R _{dson} [mΩ]	1200 V D ² PAK-7
30	IMBG120R030M1H*
45	IMBG120R045M1H*
60	IMBG120R060M1H*
90	IMBG120R090M1H*
140	IMBG120R140M1H*
220	IMBG120R220M1H*
350	IMBG120R350M1H*

R _{dson} [mΩ]	1700 V D²PAK-7 high creepage
450	IMBF170R450M1
650	IMBF170R650M1
1000	IMBF170R1K0M1

Industrial SMPS

Orderable, registerable and available / *Samples available

Significant improvement of thermal capabilities by .XT interconnection

.XT enhances optimization potential even further for SiC based designs

CoolSiC[™] MOSFET 1200 V in EasyPACK[™]

CoolSiC™ MOSFET 1200 V in 62mm - released portfolio

On-resist. R _{DSon} [mΩ]	I _{D nom} [A]	1200V	Samples	SOP plan
2	500	FF2MR12KM1	On stock	Series
3	375	FF3MR12KM1	On stock	Series
6	250	FF6MR12KM1	On stock	Series
2	500	FF2MR12KM1P	On stock	Series
3	375	FF3MR12KM1P	On stock	Series
6	250	FF6MR12KM1P	On stock	Series

Modules are available both as standard and TIM version, indication "P"

CIPOS™ Maxi 1200 V, 20 A three-phase intelligent power module

CIPOS™ Maxi 1200 V - <u>IM828-XCC</u>

- Based on 1200V CoolSiC[™] MOSFETs
- Motor power rating up to 4.8 kW at 10 kHz
- Rugged 1200 V SOI gate driver technology with stability against transient
- > Over current shutdown
- Under-voltage lockout at all channels
- > All of 6 switches turn off during protection
- > Cross-conduction prevention
- > Built-in NTC thermistor for temperature monitor
- > Programmable fault clear timing and enable input

Challenges of driving CoolSiC[™] MOSFETs

SiC MOSFET Gate Driver ICs

Infineon EiceDRIVER™ enables highest performance of SiC MOSFETs

- SiC MOSFETs are fast switching AND high voltage devices, whose common mode transient (CMT) can reach
 50 V/ns or above
- > Higher switching speed requires higher gate drive current, well-matched delays & accurate timing
- > SiC MOSFETs may need a negative gate voltage or a Miller clamp
- > SiC MOSFETs may need fast short circuit protection as its short circuit capability is less than traditional IGBT

Recommended EiceDRIVER[™] for 1200 V CoolSiC[™] MOSFETs

Products	Part Number	Typ. Peak drive current	V_{CC2} – V_{EE2}	Typ.UVLO thresholds	Typ. Prop. delay	Miller- Clamp	Other key features	Package
	1EDI20I12MF	4.1 A	20 V	11.9 V / 11 V	≤ 300 ns	Yes	Functional isolation	DSO-8 150 mil
High-Side driver family	1EDC20H12AH	3.5 A	35 V	12 V / 11.1 V	≤ 125 ns	No	8 mm Creepage clearance;	
(active & preferred)	1EDC60H12AH	9.4 A	35 V	12 V / 11.1 V	≤ 125 ns	No	UL 1577 certified with $V_{\rm ISO} = 3 \rm kV(rms)$ for 1 s	
	1EDC20I12MH	4.1 A	20 V	11.9 V / 11 V	≤ 300 ns	Yes	Miller-Clamp option	TUTT
1ED-F2 isolated High-Side driver with integrated protection (active & preferred)	<u>1ED020I12-F2</u>	2.0 A	28 V	12 V / 11 V	≤ 170 ns	Yes	Short circuit clamping: DESAT	DSO-16
2ED-F2 isolated dual High-Side driver with integrated protection (active & preferred)	<u>2ED020I12-F2</u>	2.0 A	28 V	12 V / 11 V	≤ 170 ns	Yes	protection; Active shutdown	DSO-36
1EDS Slew Rate Control (SRC) isolated High-Side driver (active & preferred)	<u>1EDS20I12SV</u>	2.0 A	28 V	11.9 V / 11 V	≤ 485 ns	Yes	Real-time adjustable gate current control; OCP; Soft turn-off shut down; Two- level turn-off; UL 1577 certified with $V_{ISO} = 5 \text{ kV(rms)}$ for 1 s	DSO-36

Copyright © Infineon Technologies AG 2020. All rights reserved.

Recommended EiceDRIVER[™] for 1200 V CoolSiC[™] MOSFETs

Products	Part number	Typ. Peak drive current	$V_{CC2} - V_{EE2}$	Typ.UVLO thresholds	Typ. Prop. delay	Miller- Clamp	Other key features	Package
	1ED3121MU12H	5.5 A	35 V	12.5 V / 10.5 V	≤ 100 ns	No	8 mm Creepage clearance;	DSO-8
1ED31xx isolated High-Side driver family	1ED3122MU12H	10 A	35 V	10 V / 8 V	≤ 100 ns	Yes	short circuit clamping; active shutdown; UL 1577 certified	300 mil
	<u>1ED3124MU12H</u>	14 A	35 V	12.5 V / 10.5 V	≤ 100 ns	No	Miller-Clamp option	
1ED24vy isolatod	<u>1ED3431MU12M</u>	3 A	35 V	12.6 V / 10.4 V	≤ 255 ns	Yes	Short circuit clamping; fast & accurate DESAT protection; active shutdown, soft turn-off;	DSO-16
High-Side driver with integrated protection	1ED3461MU12M	6 A	35 V	12.6 V / 10.4 V	≤ 255 ns	Yes*		
	<u>1ED3491MU12M</u>	9 A	35 V	12.6 V / 10.4 V	≤ 255 ns	Yes*	UL 1577 certified	
1ED38xx isolated	1ED3830MU12M	3 A	35 V	12.6 V / 10.4 V	≤ 255 ns	Yes	Short circuit clamping; fast & accurate DESAT protection; active shutdown; soft turn-off; UL 1577 certified	DSO-16
High-Side driver with I²C configurability & integrated protection	1ED3860MU12M	6 A	35 V	12.6 V / 10.4 V	≤ 255 ns	Yes		
	1ED3890MU12M	9 A	35 V	12.6 V / 10.4 V	≤ 255 ns	Yes		

*Clamp driver for external MOSFET

Agenda

	Application requirements
2	System level benefits
3	Case study of IGBTs and CoolSiC™ MOSFETs for industrial drives
4	Auxiliary power supply
5	CoolSiC™ MOSFET evaluation boards
6	Industrial CoolSiC™ portfolio
7	Key takeaways

CoolSiC[™] MOSFET Solutions for integrated servo motor for robotics

Infineon EiceDRIVER[™] enables highest performance of SiC MOSFETs

This makes CoolSiC[™] the perfect solution for servo drives

Si or SiC – which technology is the better fit for servo drives

- SiC-MOSFET will not replace IGBT in most servo drives applications, if
 - > Sufficient power semiconductor cooling is possible
 - Only moderate output frequencies are required f_{out} < 800 Hz
 - SiC-MOSFET will be used to enable compact design and to enable savings on system level, e.g. less cabling, fanless operation
- Lower switching losses compared to IGBTs at same dv/dt level and enhanced switching control (dv/dt) is possible via gate resistor
 - Efficiency increase is feasible and reduction of cooling effort
 - Simplification of inverter integration into the motor
- Simple and efficient auxiliary power supply design with 1.7 kV CoolSiC[™] MOSFETs
- Four different package types are available with CoolSiC[™] a unique Infineon offering: IPM, modules, through hole (TO-247) and SMD (TO-263)

Product page links

- > <u>CIPOS™ IPM</u>
- > iMOTION™
- > CoolSiC MOSFETs
- > <u>TRENCHSTOP™ IGBT7</u>
- > Easy power modules

- EconoPIM™ 2 & 3
- > EconoDUAL[™] IGBT modules
- > EconoPACK[™] 4
- > PrimePACK™ IGBT modules
- > <u>32-bit XMC™ microcontroller</u>

- > ISOFACE™ digital input ICs
- > OPTIGA[™] security solutions
- > <u>Magnetic sensors</u>
- > Current sensor
- > EiceDRIVER™ gate driver

> External memory

>

- Wireless connectivity
- PSoC62, PSoC64

Application pages MADK **Online simulations Online forums** Overview iMOTION™ Modular **IPOSIM** Silicon Carbide forum > х Induction motor **Discrete IGBT Motor Application Design Kit IGBT** modules forum Permanent magnet MADK **Drive Simulator** > **IGBT** discretes forum synchronized motor IPM 3-phase Inverter N Servo motor Simulator >

- > Motor control for
 - industrial automation
- > Robotics

We are happy to answer your questions now.

Disclaimer

The information given in this presentation is given as a hint for the implementation of the Infineon Technologies components only and shall not be regarded as any description of warranty of a certain functionality, conditions or quality of the Infineon Technologies components. The statements contained in this communication, including any recommendation or suggestion or methodology, are to be verified by the user before implementation, as operating conditions and environmental factors may differ. The recipient of this presentation must verify any function described herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of noninfringement of intellectual property rights of any third party) with respect to any and all information given in this presentation.

Part of your life. Part of tomorrow.