AUBOARD 15P Vv TRIA

AUBoard-15P Development Kit
Configuring the Clock Generator

Version 1.0

Page 1

Copyright © 2025 TRIA Technologies. TRIA is a registered
trademark of Avnet, Inc. All other brands are the property of their respective owners.
LIT# AUB-15P-DK-CLKGEN-V1P0O

Page 2

Contents

1 Document CONIOL......ccooi i 5
2 VA= =3 (o] o T o 1153 o YU 5
B T 011 o [T 1o o I 6
3.1 Required Hardware and SOfIWEAIeoooiiiiiiiiiii e 7
4 Clock Configuration with Timing Commander..................uuviieiiiiiiiiiiiiiieeiiieeeeeeeeee 7
4.1 Configuring Timing Commander for the 8T49N241c..vviiiii i 7
4.2 Modifying the SEttNGScooiiiii e e 8
4.3 Export the New Settings for the EEPROM ... 10
5 EEPROM Programming with Vivado and Vitis..........cccccccceeiiiiiiiiiieeccee e 11
5.1 Building the Vivado ProjECL.........oc.uiiiiiiiii e e 12
5.2 Creating the VitiS PrOJECTeeiiiiie e e e e e 13
53 RUN ON HAIAWAIEooiiiiie et s e e e e s e e e e as 17
6 Vivado Design for Clock Verification and Usage..............uueevieiiiiiiiiiiiiiiiiieiiieeenee. 19
6.1 Creating the VIivado deSIgNooii oo e e e e e e e e 19
6.2 Running the Reference DESIGNuuiiiiiiiiiicee e e e e 25
7 O T 11 1= o o 26
8 Getting Help and SUPPOrteeeeieii e 27

Page 3

Figures

Figure 1 — Clock Generator (U57) and EEPROM (U58)........ccooviiiiiiiiiiiiiieeeeeee, 6
Figure 2 — Timing Commander: Open Settings File ..o, 8
Figure 3 — Timing Commander: SAve AS ... 9
Figure 4 — Timing Commander: USRCLK Modificationccccccceeveiiieiiiiiiiiinnn. 10
Figure 5 — Timing Commander: EEPROM Editor..........ccooooiviiiiiiiiiiie e, 11
Figure 6 — Vivado Design: BIOCK Designcooooiiiiiiioie e 13
Figure 7 — Vitis: Select Platform ... 14
Figure 8 — Vilis: IMPOrt FIleS...... oo 15
Figure 9 — Updated at24aa025_config.h File ... 16
Figure 10 — Vitis: Successful BUildccoooiiiiiiiiiiieee e 17
Figure 11 —Board SEtUPuuuuiiii e 17
Figure 12 —Run Application on Hardware..............ooooiuiiiiiiiiice e 18
Figure 13 — Application OUIPUL..........ooomiiiiii e 18
Figure 14 — Programming DONEcoo i 19
Figure 15 — Vivado: Set Repo Path.............ooo s 20
Figure 16 — Vivado: Select Board Definition...............ccooiiiiiiiiiiiccie e, 21
Figure 17 — Vivado: Clocking Wizard Configurationcccccvviiiiiiii i, 22
Figure 18 — Vivado: BIOCK DeSIgNccoooiiiiiiiiii e 23
Figure 19 — Vivado: HDL Wrapper ..o 23
Figure 20 — Vivado: XDC Constraints..........ccccooeviiiiiiiiiiiiiieeeeeee e 23
Figure 21 — Vivado: Bitstream Generation Failure ... 24
Figure 22 — UltraScale+ User Guide: HDIO Global Clocksccccoiiiiiiiiiiiiiees 24
Figure 23 — Updated XDC Constraint.............ccooviiiiiiiiiiiiiee e 25
Figure 24 — Board: D32 LED BIiNKING.......ccooiiiiiiiiiiee e 26

Page 4

1 Document Control
Document Version: 1.0

Document Date: 25 January 2025

2 Version Histo

E&

1.0 01/25/2025 Initial Release

Page 5

3 Introduction

The AUBoard-15P FPGA Development Kit features two programmable clock sources that provide flexible
clock generation for various applications. The first clock source, device U56, is used to forward a jitter
attenuated version of a differential clock generated by the HDMI FPGA design. The second clock source,
device U57, provides several clock outputs, including a GTH transceiver reference clock, a general-purpose
programmable LVDS clock, and the FPGA EMCCLK used for external configuration.

For this guide, we will focus specifically on configuring the second programmable clock source, U57,
through its associated EEPROM (24AA025T). This EEPROM stores the configuration data that customizes
the clock generator settings, which are then applied during power-up.

The 8T49N241 clock generator is a programmable device that supports both single-ended and differential
outputs. The configuration values for the EEPROM will be generated using the Timing Commander Tool
from Renesas,

A schematic of the AUBoard-15P board, highlighting the U57 and U58 components, is shown in Figure 1
below.

VCCES VCC_3V3

3V3_UTiL
T
"o 4 R
WD CLX STENGII P osal| o d
em 1 o c1x
rart
2 Som
R4sE i
e i
s aremnas o2
SDA_nCS L . K
s0A.nCs {0y —Sor=got—
i i
veees 1
T 53, -
)

veco_8s
us

VCCA

CLOCK EEPROM =
7hbit address =0x50 veees
1

Figure 1 — Clock Generator (U57) and EEPROM (U58)
This guide is divided into three main sections to help you configure and verify the clock settings:

- Clock Configuration with Timing Commander: Instructions on configuring the clock settings and
generating the EEPROM content using Timing Commander.

- EEPROM Programming with Vivado and Vitis: Detailed steps for rebuilding the Vivado design,
re-creating a standalone C application, and programming the EEPROM on the AUBoard-15P
board.

- User Clock Verification and Usage: Instructions for creating a Vivado design to verify that the

“general-purpose programmable LVDS clock” also referred to as User clock has been programmed
correctly, and to demonstrate how to use the clock in your application.

Page 6

By following the steps in this guide, you will be able to efficiently configure and verify the clock settings,
enabling reliable clock generation on your AUBoard-15P applications.

3.1 Required Hardware and Software

To follow this guide and successfully configure and verify the clock settings on the AUBoard-15P ensure
you have the necessary tools and components:

e The AUBoard-15P FPGA Development Kit
¢ A Micro-B USB Debug Cable for USB-UART / JTAG
¢ Vivado Design Suite and Vitis Unified Software Platform installed on your computer (2024.1 version

used in this guide). Go to https://lwww.xilinx.com/support/download.html for download links and
help.

e Renesas Timing Commander Tool installed on your computer (1.18 version used in this guide). Go
to https://lwww.renesas.com/en/software-tool/timing-commander for download links and help.

e The source utilized this guide — AUBoard-15P-clock-configuration.zip - containing the necessary
files to rebuild the examples. This archive is available on the reference design tab on the AUBoard-
15P website located at the following short URL: http://avnet.me/AUBoard-15P

4 Clock Configuration with Timing Commander

This section focuses on using the Renesas Timing Commander Tool to configure the programmable clock
generator (U57) on the AUBoard-15P. The Timing Commander Tool simplifies the process of generating
the necessary EEPROM content for the 8T49N241 clock generator, enabling precise control of its output
frequencies.

We will guide you through the steps to define the clock settings, validate the configuration, and export the
resulting EEPROM data file. This file will later be used to program the 24AA025T EEPROM connected to
U57, ensuring that the desired clock frequencies are applied at power-up.

By the end of this section, you will have a complete configuration file ready for programming, tailored to
your application requirements.

4.1 Configuring Timing Commander for the 8T49N241
To set up Timing Commander for the 8T49N241 clock generator, follow these steps:
e LAUNCH TIMING COMMANDER and click on “OPEN SETTINGS FILE” from the main menu.

e For the SETTING FILE, select the example provided in the source archive:

o AUBoard-15P-clock-configuration\timing_commander\
IDT8T49N241_20241205_011247_U57_300MHz.tcs

¢ Next, click on the FOLDER ICON labelled “BROWSE FOR A PERSONALITY THAT SUPPORTS
THE SETTING FILE”.

o Locate and select the corresponding personality file from the source archive:

Page 7

o AUBoard-15P-clock-configuration\timing_commander\8T49N24x_V1.7.3.tcp

e Once the settings file and personality file are loaded, the Timing Commander interface should
appear as the example shown in the figure below:

€9 DT Timing Commander 13

OIDT
TIMING COMMANDER™

Open Settings File RS — Your Tim ing Tree

e —

Figure 2 — Timing Commander: Open Settings File

e Proceed with this setup by clicking on the “OPEN” button

4.2 Modifying the Settings

To customize the example configuration and set the user clock frequency to 100 MHz, follow these steps:
1. Save the Current Settings File:

a. Click on the “IDT8T49N241 V1.7.3” text at the top left corner of the Timing
Commander window.

b. Click on the FLOPPY DISK ICON to save the file with a new name (e.qg.,
IDT8T49N241_my_settings):

c. Click “YES” when asked to include the register map.

Page 8

IDT8T49N241 V1.7.3

EE = B &
Product Family [DTET49N24x

Personality BT49N24x V1.7.3 (build 5.2) i
Company

Project

Operator

Dash Code

Comments:

IDTETAOMN241-EENLGI V1.7.3

Write changes to a frace file?

Disable monitoring the connection o the chip? |i'|

._\‘_“
LB Imput Frequency O (MHz) =
DI | [

Mmi‘tﬂri

[j":‘| Input Frequency 1 (MHz) i -/:-..‘,__;J_i |

-

Figure 3 — Timing Commander: Save As
2. Unlock the User Clock Frequency Setting:

a. Locate the RED LOCK ICON associated with the user clock frequency parameter: “Q1
FREQUENCY” for USRCLK.

b. Click on the lock icon to enable editing of this setting.
3. Enter 100 in the input field for the user clock frequency.

4. Click on the LOCK ICON again to lock the clock setting and prevent further changes. The
Timing Commander interface should appear as the example shown below:

Page 9

IDTETABN241-#NLGI V1.7.2

00 Frequency (MHz) e
= t (]
) x 1 - e Actual: 150MHz

‘
EMCCLK

___ Input Frequency O (MHz) I | QFrequm:-fMH::. ey

- — | | o] B %

! L)
i ‘ VCO Freq: Actual: 100MHz
i | 3000.0MHz
Manitor F,:’_idh_"' i I USRCLK
| (il | VEO Fracton

375

= Input Frequency 1 (MHz
&

~

Figure 4 — Timing Commander: USRCLK Modification

4.3 Export the New Settings for the EEPROM

Once you’ve modified the user clock frequency, it's time to export the updated settings for the EEPROM.

IMPORTANT: Timing Commander may not always register the modifications immediately. A quick way to
verify that the changes are effective is by checking the CRC8 VALUE.

1. Verify the Modifications with CRC8:
a. Click on the EEPROM button in the top right corner of the interface.

b. Select EDIT or OVERRIDE to view the EEPROM configuration dump.

2. Check the CRC8 Value:
a. Atthe bottom of the EEPROM Editor window, you will see the CRC8 VALUE.

b. The CRCS8 value should be DIFFERENT from the example settings you started with,
which had a CRC8 of 0x79.

c. After modifying the Q1 frequency to 100 MHz, the CRC8 value should now be 0xD9,
as shown in the image below:

Page 10

ko : ==
EEPROM Editor (o]

!DTFHQIIQ 2§ 4 5 6 %8 9% BB € D E F

O 09 88 95 GE 00 Fimguency (A=) —
0L 28 20 00 00 0D 08]
B0 27 CC 00 00 00 00 sual: 150MHz

ACCLK

|_i:'| [] xo

o

_ Input Frequency 0 (MHz) e | Frequency (MHz) ol
P x @
L

#ual: 100MHz
SRCLK

2 Frequency (MHz)

. e B
P In ! F_ uenn' 1 MHz) ~]
p ot ' 01552

‘ Copy | | Revert to Default '

Figure 5 — Timing Commander: EEPROM Editor

3. Export the Settings:

a. If the CRC8 value is correct, click OK and then click Export to File to save the
settings. You can keep the default file name: IDT8T49N241_my_settings_ EEPROM.

b. If the CRC8 value is incorrect (either unchanged or modified when clicking on the
Revert to Default button), click Cancel, then restart the verification process by clicking
the “EDIT” or “OVERRIDE” button, or try modifying the Q1 frequency again.
4. Verify the Generated File:
a. Open the generated file IDT8T49N241_my_settings_ EEPROM.txt.

b. You should see a sequence of hexadecimal values, with the last one being the CRC8
value (which should be 0xD9 in our case).

5 EEPROM Programming with Vivado and Vitis

In this section, we will create a hardware design in Vivado featuring a MicroBlaze processor, a UART for
communication, and IIC to interface with the EEPROM. This design will provide the necessary infrastructure
to program the EEPROM on the AUBoard-15P Development Kit.

Page 11

Using Vitis, we will develop a standalone application to program the EEPROM with the configuration file
generated in the previous chapter. This process ensures that the user clock is programmed accurately and
is ready for verification.

5.1 Building the Vivado project

NOTE: Much of reference designs created by Tria are created/scripted for use on Linux workstations. It is
possible to perform these tasks on Windows machines, but for this reference design example the guide
shows implementation on a Linux machine.
On a Linux computer with Vivado version 2024.1 installed:

1. Open a Linux terminal.

2. Set the Environment Variable

Set the GUIDE_HOME variable to the location of the downloaded project files:

$ export GUIDE HOME=</path/to/downloaded/zipfile>/AUBoard-15P-
clock-configuration

3. Change directory to $GUIDE_HOME!/. Clone the board definition file repository:

$ git clone https://github.com/Avnet/bdf.git

4. Change directory to $§GUIDE_HOME/pl, run:

$ vivado -source build.tcl -tclargs --repo-paths ../bdf

This command should open Vivado and create the design in the $GUIDE_HOME/pl/build folder. The
design includes a Microblaze, an AXI Uartlite for serial communication and an AXI IIC for accessing the
EEPROM.

If you click on “OPEN BLOCK DESIGN” (Flow Navigator panel), you should see the following:

Page 12

File Edt Flow Tools Repots Window Leyout Wiew Help Ready

& & = b, B B X Default Layout v
Flow Navigator SIPEI 5LOCK DESIGN - design 1 2 %
v PROJECT MANAGER =

Sour D x Sign|Boa| ? _ O [|Diagram x| Address Map x 200
£ settings
[| L] e X ® 2 B aajC|a Default View ~
Add Sources .
; design_1 ~
tengagaTamplites > & Brternal Interfaces
£ 1P Catalog > Interface Connections
> Ports
v IP INTEGRATOR > Nets
Create Block Design H¥ aRlle0 (X
> % aul_uartiite_0 (AXI Uartlte:2
Open Block Design »% clk.wiz 6 (clocking Ward
Generate Block Design » % mdm_1 (MicroBlaze Debug Modt
> % microblaze_0 (MicroBl:
v SIMULATION > [E] microblaze_0_axi_periph .
Run Simulation < 2
Properties P %
v RTLANALYSIS
%
» Run Linter
> Open Elaborated Design
v SYNTHESIS
P Run Synthesis
> of
~ IMPLEMENTATION
» Run mplementation
B TdConsole x Messages |Log 2_00
> Open Implemented Desig
Q T /Il B B @
~ PROGRAM AND DEBUG adding conponent instance block -- xilink.com:ip:axi_interconnect:2.1 - nicroblaze 0 axi_periph ~
9 Adding conponent instance block -- xilink.com:ip:axi_crossbar:2.1 - xbar
¥ Generate Bitstream adding component instance block -- xilinx.com:ip:microblaze:11.0 - microblaze 0
" Adding conponent instance block -- xilink.con:ip:lnb_v10:3.0 - dlub_vi@
S, Opef Herdware Manager Adding component instance block -- xilinx.com:ip:lmb_v1@:3.0 - ilmb_v10
Adding conponent instance block -- xilink.con:ip:lnb_bran_if cntlr:2. - dlmb_bran_if cntlr
Adding conponent instance block -- xilink.con:ip:lab bran_if cntlri4.@ - ilmb bran if cntlr
adding conponent instance block -- xilink.con:ip:blk_men_gen:8.4 - lnb_bran
adding conponent instance block -- xilink.con:ip:ndmi3.2 - adn 1
Adding conponent instance block -- xiline.con:ip:axi_uartlite:2.0 - axi_vartlite o
adding conponent instance block -- xilink.con:ipiclk wiz:6.0 - clk viz |
Successfully read diagran <design 1> fron block design file =/home; pos /aub15_user_clock /quide/aubl1sp-clock-confiquration/pl/build/aubls-clk_prog/aubls-clk_prog.sres/sources_1/bd/design_1/design 1.bd>
< >

Figure 6 — Vivado Design: Block Design

5. Click on “GENERATE BITSTREAM” (Flow Navigator panel)
6. Exporting the resulting generate hardware design file:

a. Once the bitstream is generated, click on FILE -> EXPORT -> EXPORT
HARDWARE..., then click on NEXT.

b. Check the “INCLUDE BITSTREAM” option and click on NEXT.

c. You can then change the name and location of the generated XSA. By default, the
XSA will be written in $GUIDE_HOME/pl/build/aub15-
clk_prog/design_1_wrapper.xsa.

Click on NEXT and then FINISH.

d. Once the XSA is generated, you can close Vivado.

5.2 Creating the Vitis project

To create the Vitis project based on the XSA previously generated:

1. Change directory to $§GUIDE_HOME/vitis and create a WORKSPACE directory:

$ cd $GUIDE HOME/vitis
$ mkdir workspace

$ cd workspace

Page 13

2. Open Vitis with:

$ vitis &

3. On the left panel, click on “OPEN WORKSPACE”, and select the
$GUIDE_HOME/vitis/workspace folder.

4. On the left panel, click on “CREATE PLATFORM COMPONENT”, then select NEXT.

5. Click on BROWSE to select an XSA. Select the XSA created in the previous section (named
by default): $GUIDE_HOME/pl/build/aub15-clk_prog/design_1_wrapper.xsa

6. Leave the Operating system as STANDALONE, and click on NEXT, and FINISH.
7. Click on FILE -> NEW COMPONENT -> APPLICATION.
8. Write “clock_program” as the COMPONENT NAME and click on NEXT.

9. Select the PLATFORM that was created in the previous steps:

Select Platform

Platforms

L LR R]

Figure 7 — Vitis: Select Platform

10. Click on NEXT. On the Select Domain page, click on the standalone_microblaze_0 domain,
then NEXT, and FINISH.

11. On the left panel, under the new “clock_program” Application, Sources. Right click on SRC,
and click on IMPORT -> FILES...

Page 14

a File Edit Selection View Go Terminal Vitis

{-} wvitis-comp.json platfoy

Empty Applicati
clock_program [Application]

Ablank C project.

1D

Hierarchical name
New File
MNew Folder Hide Details

Copy

Faste

Copy Path

Copy Relative Path

Rename

Delete

Import

Figure 8 — Vitis: Import Files
12. SELECT ALL the files from the $GUIDE_HOME /vitis/src/ folder.
13. On the left panel, click on the at24aa025_config.h file from the SRC directory to modify it:
a. Replace the content of the AT24AA025_IDT8T49N241_CFG array with the data
found in the IDT8T49N241_my_settings_ EEPROM.txt file generated by Timing

Commander (Section 4.3 of this document).

b. The at24aa025_config.h file should now look like the following figure:

Page 15

u8 AT24AA025 TDT8T49N241 CFG[AT24AA025 CONFIG_SIZE] = {
OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, 0x00,
Ox03, Ox00, 0x31, Ox00, 0x00, Ox01, Ox00, 0x00,
Ox01, Ox07, 0x00, Ox00, 0x0Q7, Ox00, Ox00, 0x77,
Ox6D, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, OxXFF,
OxFF, OxFF, OxFF, Ox03, Ox3F, 0x00, 0x25, 0x00,
Ox10, Ox00, 0x00, Ox00, 0x01, Ox00, Ox00, 0xDO,
Ox00, Ox00, 0x00, Ox00, 0x00, Ox00, Ox00, 0x00,
Ox00, Ox07, 0x00, Ox00, 0x00, Ox24, Ox46, 0x00,
Ox00, Ox02, 0x00, Ox00, OxOF, Ox00, Ox00, 0x09,
Ox00, Ox00, 0x00, Ox00, 0x00, Ox00, Ox00, 0x00,
Ox00, Ox00, 0x00, Ox00, 0x00, Ox00, Ox00, 0x00,
Ox00, Ox00, 0x00, Ox09, 0x99, Ox99, Ox9A, 0x00,
Ox00, Ox00, 0x00, Ox00, 0x00, Ox00, Ox00, 0x00,
OXE2, Ox0A, Ox2B, Ox20, 0x00, Ox00, Ox00, 0x08,
Ox00, Ox00, 0x00, Ox00, 0x00, Ox00, Ox00, 0x00,
Ox00, Ox00, 0x27, OxCC, Ox00, Ox00, Ox00, 0x00,
Ox00, Ox00, 0x00, Ox00, 0xD9

Ix

Figure 9 — Updated at24aa025_config.h File

14. On the left panel, in the Flow section, click on BUILD. The build should be successful, as
shown in the figure below:

Page 16

ouTRUT x

Vitis Server

Figure 10 — Vitis: Successful Build

5.3 Run on Hardware

With the Vivado design and Vitis application ready, the next step is to run them on the AUBoard-15P
Development Kit to program the EEPROM with the desired clock configuration. Follow these steps to set
up and power the board:

Figure 11 — Board Setup

Page 17

NOTE: When the board powers up, you should see some LEDs turn on or blink, indicating that the
default Out-of-Box image is running.

1. Open a serial console on the second TTY port of the board (typically /dev/ttyUSB1 on your
computer) with a baud rate of 115200.

2. In Vitis, click on RUN from the left panel:

OUTPUT x TASK: XSDB CONSOLE PROB!

Figure 12 —Run Application on Hardware
3. The program output will appear on the serial console. The displayed text includes:
- A brief description of the program.
- A dump of the current EEPROM configuration.

- A prompt asking if you want to write the new configuration.

Figure 13 — Application Output

Page 18

4. Type “Y” in the serial console to confirm writing the new configuration to the EEPROM.

5. The program writes the new configuration to the EEPROM, then displays the updated memory
dump and verifies its correctness. The output should look like the example in the figure below:

Figure 14 — Programming Done

6 Vivado Design for Clock Verification and Usage

In this section, we will create a Vivado hardware design to verify that the user clock, generated by the
programmable clock source (U57), has been correctly configured and is functioning as intended. This
verification step builds upon the work completed in the previous sections, where we programmed the
EEPROM with the desired clock configuration using Timing Commander, Vivado, and Vitis.
The design will include:

- A basic clocking structure to drive components in the design using the user clock.

- An LED connected to the clock signal to visually confirm the clock's operation by making it blink at
a frequency derived from the user clock.

By the end of this section, you will have a fully functional hardware design that validates the programmed
clock and provides an example of its use.

6.1 Creating the Vivado design

To create a simple Vivado design that makes an LED blink using the configured user clock, follow these
steps:

1. Change directory to $GUIDE_HOME/ and navigate to the clock_verif directory:

$ cd $GUIDE HOME/

$ cd clock verif

2. Open Vivado with:

$ vivado &

3. Open the Tcl Console at the bottom of the Vivado window and enter the following command:

set param board.repoPaths ../bdf/

Page 19

Adjust the bdf path if you cloned it to a different location during section 5.1 tasks.

Manage IP >
Open Hardware Manager >
Vivado Store >

|
_;

Learning Center 1

Figure 15 — Vivado: Set Repo Path
4. Click on FILE -> PROJECT -> NEW... to create a new project.
5. Step Through the Wizard:
a. Click NEXT on the introduction screen.

b. Change the PROJECT NAME to clock_verif_prj.

c. Click NEXT and leave the project type as RTL PROJECT and enable "Do not specify
sources at this time."

d. Onthe PART OR BOARD SELECTION screen, switch to the BOARDS tab.

e. Select the Avnet-Tria AUBoard-15P Development Board from the list.

Page 20

o New Project <@f495e854dd18> v A X

X
Default Part
Choose a default AMD part or board for your project.

Parts | Boards
@ To fetch the latest available boards from git repository, click on ‘Refresh’ button. Dismiss

Reset All Filters

Vendor: | All v Name: | All v Board Rev: | Latest v
Q Y,

Search: | Q v

Display Name Preview Status Vendor File Version Part

Avnet-Tria AUBoard 15P Development Board i &
Add Companion Card Connections H Installed avnettria 1.1 xcaulSpffvb676-2-e
Avnet-Tria K24 Development Kit - SOM and Carrier Card e
Add n Card Connections Installed avnettria 1.0 Kria Part
)

Avnet-Tria MicroZed 7010 Board
Installed avnettria 1.4 %c72010¢lg400-1

Avnet-Tria MicroZed 7020 Board
Installed avnettria 1.4 %c72020clg400-1

< § >

® [ee

Figure 16 — Vivado: Select Board Definition
f. Click NEXT and then FINISH to complete the project setup.

6. From the Flow Navigator, click on “CREATE BLOCK DESIGN” (you can leave the default
name).

7. Add the following IPs to the design:
a. A CLOCKING WIZARD IP, double click on the IP to configure it.

- In the CLOCKING OPTIONS tab, set the PRIMARY SOURCE under Input Clock
Information to GLOBAL BUFFER.

- In the OUTPUT CLOCKS tab, set the OUTPUT FREQUENCY of clk_out1 to
10MHz. Uncheck the RESET and LOCKED checkboxes.

Page 21

Clocking Wizard (6.0)

1P symbol Resou Component Name | clk_wiz_0

) show disabled ports
Output Clocks MMCH Setiir ummary
tputtreqMHzy phase (degrees, uty Cycle ¢ D Matcned

ous) grees) 2 Maxireq. .
Outputiclock. |PortMame | o ietted Actual Requested Actual Requested |Actual | Tives Routing of buffer
@ clk_outl clk_outl 10.000 10.00000 0,000 0.000 50.000 s0.0 Buffer - 775194
clk_outz clk_out2 100,000 0.000 50.000
clk_out3 100,000 0.000 50.000
clk_outa 100,000 0.000 50.000
clk_outs 100,000 0,000 50.000
clk_outs 100,000 0,000 50,000
clk_out7 100,000 0.000 50.000
. Output Clock Sequence Number
clk_in1 clk_outl
1
1
1
1
1
1
1
Enable Optional Inputs / Outputs for MMCM/PLL Reset Type Phase Shift Mode
reset power_down [input_clk_stopped WAVEFORM (@) LATENCY

lacked (] clkfbstopped

Figure 17 — Vivado: Clocking Wizard Configuration

b. AUTILITY BUFFER IP:
- By default it will be an IBUFDS type.
- Connect its output (IBUF_OUT[0:0}) to the Clocking Wizard input (clk_in1).
- Right click on the input (CLK_IN_D) and click on CREATE INTERFACE PORT.

- Choose Slave xilinx.com:interface:diff_clk_rtl:1.0 interface and name it
“‘user_clock_100mhz”.

- Double-click the interface port and verify it is set to 100 MHz.
c. A BINARY COUNTER IP:

- Configure the Output Width to 26:

- Connect the input (CLK) to the Clocking Wizard output (clk_out1).
d. ASLICEIP:

- Configure Din Width = 26

- Configure Din From = 25

- Configure Din Down To = 25

- Configure Dout Width = 1

Page 22

- Connect its input (Din[25:0]) to the Binary Counter output (Q[25:0]).
Right click on the output and click on CREATE PORT and name it “led”.

You should end up with a block design that looks like the figure shown below.

util_ds_buf 0 clk_wiz_0 c_counter blnary 0 xlslice_0
pps|| + CLK_IN_D 1BUF_OUT[D: n] tlk in1 clk_outl H Q[25:0] H Din[25:0] Dout{0:0] H led[0:0]
Utility Buffer “Clocking Wizard | g Wizard Binary Counter y Counter

Figure 18 — Vivado: Block Design

This design utilizes the user_clock (previously programmed to 100 MHz) as the input. A Clocking Wizard
divides the frequency to 10 MHz, which feeds a binary counter. The MSB of this counter is then used to
drive the LED at a frequency that the toggling is visible.

8. In the SOURCES tab, right click on the “design_1.bd” file, and select CREATE HDL

Eile Edit Flow Tools Reperts Window Layout View Help
W, E . g X ® @ b, B & % %
Flow Navigator ES BBl BLOCK DESIGN - design_1
v PROJECT MANAGER N
Sources x Design | Signals | Board ? - OO Diagram
£ Settings
a = s + gl aannoe
Add Sources e
i = i Design Sources (1
SRgpagEteTpates > -8 design 1 (design] T
o . Source Node Properties..,
¥ IP catalog > Constraints B o i
simulation Sources (11| = CPETTEE
" 3 Open With »

¥ IP INTEGRATOR sim_1 (1 ?

Create Block Design Utility Sources Create HDL Wrapper...
View Instantiation Template
Open Block Design
Generate Output Products...

Generate Block Design Reset Output Products...

¥ SMUEATION Hierarchy [P Sources
Run Simulation 1 100mhz [

Figure 19 — Vivado: HDL Wrapper

Select to let VIVADO MANAGER WRAPPER and AUTO-UPDATE and then click OK.

9. Click on FILE -> ADD SOURCE, select ADD OR CREATE CONSTRAINTS, and create a new

file named “aub15”.

10. Open the aub15.xdc generated from the Sources tab and add the following constraints:

set_property PACKAGE_PIN D10 [get_ports user_clock_100mhz_clk_n]
set_property PACKAGE_PIN D11 [get_ports user_clock_100mhz_clk_p]

set_property IOSTANDARD LVDS_25 [get_ports user_clock_100mhz_clk_n]
set_property IOSTANDARD LVDS_25 [get_ports user_clock_100mhz_clk_p]

set_property PACKAGE_PIN B1@ [get_ports led]
set_property IOSTANDARD LVCMOS33 [get_ports led]

Figure 20 — Vivado: XDC Constraints

Page 23

11. Click on GENERATE BITSTREAM from the Flow Navigator panel.

generation should fail with this kind of error message:

At this point the Bitstream

Fle Edt Flow Tools Reports Window Llayout Mew Help | O QuickAccess place_desion ERROR @
= =] X o & b, B & % X == Default Layout v
Flow Navigator SRR 5L0CK DESIGN - design 1 2 x
v PROJECT MANAGER =
Sources x Design |Signals |Board | ? _ O [| Diagram x| aublsxdc x 200
£ settings
o — Q| Z| &+ -3 5_user ¢ p-clock- c_verificlock_verificlock_verif. 5_1/new/aubl5.xdc x
= Design Sources (1 ~
Language Templates o o Q « % B EB(X / E Q o
> @ . design_1_wrapper (design 1 wrappery) (1)
B P Catalo 2 1! set_property PACKAGE_PIN DLO [get_ports user_clock_ladnhz_clk_n] ~
9 /@ Gonstraints:(1. 2 | set_property PACKAGE PIN DL [get_ports user_clock_10omhz_cLk_p]
= constrs 1 (1) 3
4 set_property TOSTANDARD LYDS_25 [get_ports user_clock_100mhz_clk_n]
SR I ECRATER DR 5 | set_property IOSTANDARD LVDS 25 [get_ports user_clack_100mhz_clk p]
P — + - Simulation Sources (1) e
e 7| set_property PACKAGE_PIN E10 [get_ports led]
Open Block Design Hierarchy | IP Sources Lbraries Complle Order & set_property TOSTANDARD LVCMOS33 [get_ports led]
Generate Block Design
Source File Properties ?_DOox
v SIMULATION I aubl5.xdc - o
Run Simulation . ~
) Enabled
A — Location: thome/dockerirepos/aubls_user_clock/guic
» RunLinter 8 - > N
General Froperties - 5
> Open Elaborated Design
Tel Console | Messages x Log |Reports | Design Runs > _oo
v SYNTHESIS = = = 5
Q $ Y, 8 @ U@cror@ [O0wamngos (O@info20) @ stetus196) | showAl -3

P Run synthesis
~ s Implementation (4 errors)
+ fia Place Design
@ [Place 3067
to @ WARNING. However, the use of this override is highly discouraged. These examples can be used directly in the .xdc file to override this clock rule.
< set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets design_1_i/util_ds_buf_0/U0/USE IBUFDS,GEN_IBUFDS0].IBUFDS_l/0] >

> Open Synthesized Design

~ IMPLEMENTATION

» Run mplementation
Clock Rule: rule_gelkio_bufg

Status: FALED

Rule Description: An 108 driving a BUFG must use a GCIO in the same clock region as the BUFG

> Openl

v PROGRAM AND DEBUG design_1_jutil_ds_buf_0/UO/USE IBUFDS. GEN_IBUFDS[0].IBUFDS_INBUFCTRL INST (IBUFCTRL.O) is locked to I0B_X1Y80

" design_1_j/clk wiz_o/inst/clkinl_bufg (BUFGCE.) is provisionally placed by clockplacer on BUFGCE_X0Y42
Vi Generate Bitstream

The above error could possibly be related to other connected instances. Following is a list of
> Open Hardware Manager all the related clock rules and their respective instances.

Clock Rule: rule_bufg_mmcm_1load

Status: PASS

Rule Description: A BUFGCE with I/0 driver driving a single MMCM must both be in the same clock region

if CLOCK_DEDICATED_ROUTE=BACKBONE is NOT set

design_I_i/clk_wiz_0finst/clkinl_bufg (BUFGCE.O) is provisionally placed by clockplacer on BUFGCE X0Y42

design_1 i/clk_wiz_0/inst/mmecried_adv_inst (MMCME4_ADV.CLKINL) is provisionally placed by clockplacer on MMCM X1

Clock Rule: rule_bufgce_bufg_conflict
Status: PASS
Rule Description: Only one of the 2 available sites (BUFGCE or BUFGCE_DIV/BUFGCTRL) in a pair can be

5] Sub-optimal placement for a global clock-capable [0 pin and BUFG pair. f this sub optimal condition is acceptable for this design, you may use the CLOCK_DEDICATED_ROUTE constraint in the .xdc file to demote this message

Figure 21 — Vivado: Bitstream Generation Failure

The failure during Bitstream Generation is because the design attempts to route a clock signal through a
non-dedicated clock path, which is not optimal for clock signals routed within an HDIO bank. This

limitation of UltraScale+ device is described in the user guide as follows:

Global Clock Inputs

property CLOCK_DEDICATED_ROUTE =

signals.

External global user clocks must be brought into the UltraScale device on differential clock
pin pairs called global clock (GC) inputs. There are four GC pin pairs in each bank that have
direct access to the global clock buffers, MMCMs, and PLLs that are in the CMT adjacent to
the same I/O bank. The UltraScale+ architecture has four HDGC pins per HD 1/O bank. HD
I/O banks are only part of the UltraScale+ family. Since HD I/O banks do not have a XIPHY
and CMT next to them, the HDGC pins can only directly drive BUFGCEs (BUFGs) and not
MMCMs/PLLs. Therefore, clocks that are connected to an HDGC pin can only connect to
MMCMs/PLLs through the BUFGCEs. To avoid a design rule check (DRC) error, set the
FALSE. GC inputs provide dedicated, high-speed
access to the internal global and regional clock resources. GC inputs use dedicated routing
and must be used for clock inputs where the timing of various clocking features is
imperative. General-purpose 1/O with local interconnects should not be used for clock

Figure 22 — UltraScale+ User Guide: HDIO Global Clocks

Page 24

12. To resolve this issue with routing of the clock tree, copy this constraint “set property
CLOCK_DEDICATED_ROUTE FALSE ...” from the error message into the constraint file
aub15.xdc. For reference, the updated file will look something like this:

set_property PACKAGE_PIN D10 [get_ports user_clock_100mhz_clk_n]
set_property PACKAGE_PIN D11 [get_ports user_clock_100mhz_clk_p]

set_property IOSTANDARD LVDS_25 [get_ports user_clock_100mhz_clk_n]
set_property IOSTANDARD LVDS_25 [get_ports user_clock_100mhz_clk_p]

set_property PACKAGE_PIN B10 [get_ports led]
set_property IOSTANDARD LVCMOS33 [get_ports led]

set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets
design_1_i/util_ds_buf 0/U0/USE_IBUFDS.GEN_IBUFDS[0].IBUFDS_I/0O]

Figure 23 — Updated XDC Constraint

13. Save the constraints file and re-run GENERATE BITSTREAM. The bitstream generation
should now complete successfully.

6.2 Running the Reference Design

After successfully generating the bitstream for the LED blinking design, the next step is to load the bitstream
onto the target board and verify its functionality. Follow the steps below to program the reference design
into the target hardware:

1. Prepare the Hardware

a. Connect the 12V power supply to the power connector (J51) on the board.

b. Use a USB-micro-USB cable to connect your computer to the JTAG UART port (J9)
on the board.

c. Turn on the board using the power switch (SW1).

2. Program the FPGA
a. From the Vivado FLOW NAVIGATOR, click on OPEN HARDWARE MANAGER.
b. Click on OPEN TARGET, then AUTO CONNECT to connect to the target hardware.

c. Ensure the AUBoard-15P Development Kit is listed in the connected devices.

d. Inthe Hardware Manager, click on PROGRAM DEVICE and select the target FPGA.

e. Inthe file browser that appears, navigate to your generated bitstream file (e.g.,
design_1_wrapper.bit)

f. Click PROGRAM.

Page 25

g. Once the programming process is complete, the hardware will be configured with the
LED blinking design.

3. Verify the LED Blinking

Observe the onboard D32 LED, as shown in the picture above:

D32 LED
Blinking

m——
v TRIA. li,i .

1541]

AMDID1 &

BT '] = : Bl

= R , AR % | .I . : \! \1
’ 4 " rRN i _I'LII.III

Figure 24 — Board: D32 LED Blinking

It should now blink with a period of approximately 6.71 seconds, as configured in the design.
This 6.71-second period results from the 100 MHz user clock being divided down to 10 MHz
by the Clocking Wizard, and then further divided by 226 through the binary counter, making
the LED toggle with a 6.71s period.

7 Conclusion

This concludes the Configuring the Clock Generator Reference design for the AUBoard-15P Development
Kit. The final LED blinking verification is a practical test to ensure the successful programming of the
EEPROM and the proper configuration of the user clock, which aligns with the overall project goal of
enabling the end user to program the out-of-box clock configuration or to potentially allow the end-user to
customize the clock configuration to better suit their application needs.

Page 26

8 Getting Help and Support

If additional support is required, TRIA Technologies has many avenues to search depending on your needs.

For general question regarding AUBoard-15P Development Kit, please visit our website at
http://avnet.me/auboard-15p. Here you can find any available documentation, technical specifications,
videos and tutorials, reference designs and other support.

Detailed questions regarding AUBoard-15P Development Kit hardware design, software application
development, using AMD tools, training and other topics can be posted on the AUBoard-15P Development
Kit Support Forum at http://avnet.me/auboard-15p-forum. Avnet’'s technical support team monitors the
forum during normal business hours in North America.

Those interested in customer-specific options on AUBoard-15P Development Kit can send inquiries to
customize@avnet.com.

Page 27

