

© 2018 Avnet. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Avnet is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this
feature, application, or standard, Avnet makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights
you may require for your implementation. Avnet expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to
any warranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Implementing FFT Accelerators
with SDSoCTM Using Open-Source
Software and C-Callable IP

Page 2

Introduction

The Fast Fourier Transform (FFT) is one of the fundamental building blocks of Digital Signal Processing
(DSP) and Signal Analysis. Due to its frequent use, many device manufacturers offer code libraries and
intellectual property (IP) optimized for their architecture in order to achieve the highest possible
performance. Xilinx, for example, offers a fully customizable FFT IP core that is optimized for their FPGA,
Zynq® SoC, and Zynq MPSoC programmable logic devices. When it comes to general purpose computers
there are a few open source code libraries. One such open source library is the Fastest Fourier Transform
in the West (FFTW) library which can be obtained from www.fftw.org.

This paper looks at the performance of two different single-precision floating-point FFT implementations
using a Xilinx Zynq UltraScale+TM MPSoC device and the SDSoC Development Environment. The first
implementation uses version 3.3.7 of the FFTW library compiled for the ARM® Cortex®-A53 processor within
a Xilinx ZU3EG device. The second implementation is a FPGA accelerator using the Xilinx LogiCoreTM IP
FFT version 9.0 (XFFT) running in the programmable logic of the ZU3EG device.

Environment

The Avnet® UltraZed-EGTM Starter Kit was chosen as the test platform for evaluating FFT performance.
The UltraZed features the Xilinx Zynq UltraScale+ MPSoC ZU3EG device. The ZU3EG device features a
Processing System (PS) containing quad-core ARM Cortex-A53 application processors (APU), dual-core
ARM Cortex-R5 real-time processors (RPU), and an ARM MaliTM-400 MP2 GPU. Linux was chosen as the
host operating system which provides symmetric multi-processing support. For an apples-to-apples
comparison, this paper only looks at running the FFTW library on a single APU core running at 1.1GHz.

The ZU3EG device also features FPGA programmable logic (PL) with 360 dedicated DSP slices to support
heavy computational workloads. The XFFT running in PL operates at a 300 MHz clock rate using the
pipelined-streaming I/O architecture. During execution of the XFFT, the PS offloads processing to the PL
and then waits for the results to be computed. This processing model is characteristic of a heterogeneous
compute system with a host processor and co-processor accelerator. The Xilinx Zynq UltraScale+ MPSoC
architecture combines the heterogeneous system into a single chip solution.

The SDSoC platform for the UltraZed-EG Starter Kit can be downloaded from the zedboard.org website
using the link http://www.zedboard.org/content/ultrazed-3eg-starter-kit-sdsoc-platform-sdsoc-20172. The
platform is built using the 2017.2 Xilinx tool suite, but can be used with the 2017.4 release without issue.
For more details on the UltraZed-EG Starter Kit visit http://www.zedboard.org/product/ultrazed-eg-starter-
kit.

Test Setup

Xilinx offers a feature-rich software defined development environment for implementing complex algorithms
in embedded processors and FPGA fabric. One such tool is the SDSoC Development Environment.
SDSoC stands for Software Defined System-on-Chip and allows for easy acceleration of software defined
functions using FPGA programmable logic. SDSoC takes functions defined in C/C++ and moves them to
FPGA fabric for acceleration. More details on SDSoC can be found on the Xilinx website at
https://www.xilinx.com/sdsoc.

For the purpose of this paper, SDSoC is the perfect environment to run FFT implementations in both
software and in FPGA fabric. Thus, a software based test bench was created as the main application
calling both the FFTW and XFFT libraries. FFT execution time performance was measured using a built-
in high-resolution timer operating at the 1.1GHz APU clock. Figure 1 depicts a block diagram of the SDSoC
based test bench.

http://www.fftw.org/
http://www.zedboard.org/content/ultrazed-3eg-starter-kit-sdsoc-platform-sdsoc-20172
http://www.zedboard.org/product/ultrazed-eg-starter-kit
http://www.zedboard.org/product/ultrazed-eg-starter-kit
https://www.xilinx.com/sdsoc

Page 3

Figure 1 – SDSoC Test bench

Two methods of measuring execution time performance were used for XFFT analysis. The first method
measures the average time of a blocking XFFT function call. The second method measures the average
time of a non-blocking XFFT function call. Both methods perform 1000 function calls and compute the
average execution time per call. With non-blocking function calls the SDSoC application continues
execution after calling the PL accelerator without waiting for the accelerator to finish processing. A blocking
function call waits for the PL accelerator to complete processing before proceeding. Performing non-
blocking function calls helps overcome the overhead of transferring data between the PS and PL because
the next set of data can be loaded while the current data is being processed. Figure 2 demonstrates the
processing flow for the two measurement methods.

Figure 2 – PL Accelerator Execution Model

Page 4

Results

Table 1 below gives the average round-trip processing times per function call for the FFTW and XFFT
implementations for power-of-two FFT sizes ranging from 8 to 16384. Round-trip processing time includes
any overhead associated with data movement between PS and PL.

FFT execution performance using FFTW and XFFT
(FFTW in ARM Cortex-A53 @ 1.1GHz; XFFT in Xilinx PL @ 300MHz)

FFT Size
FFTW

Execution Time (us)
Blocking XFFT

Execution Time (us)
Non-blocking XFFT
Execution Time (us)

8 0.2 2.1 9.3

16 0.3 2.2 9.4

32 0.8 2.6 9.5

64 1.4 3.2 9.7

128 3.0 4.2 9.6

256 8.2 5.9 10.0

512 21.5 9.4 10.3

1024 58.9 16.2 12.9

2048 151.3 30.0 14.2

4096 442.8 57.3 25.2

8192 853.3 112.1 40.0

16384 2215.0 221.6 76.6

Table 1 – FFT Execution Time Performance

As seen in Table 1 above and Figure 3 below, the XFFT implementation has a longer execution time than
the FFTW library for FFT sizes smaller than 256. For FFT sizes larger than 256 the XFFT implemented in
the PL outperforms the FFTW library running on the ARM processor. Figure 3 also shows XFFT sizes 8
through 32 have approximately the same processing time. This indicates that the overhead of moving the
data from the PS to the PL is overshadowing the FFT computation time. Thus, for small FFT sizes it does
not make sense to offload a single FFT operation to a PL accelerator.

Figure 3 – FFT Processing Times (8 – 1024 point)

0

10

20

30

40

50

60

70

8 16 32 64 128 256 512 1024

P
ro

c
e

s
s
in

g
 T

im
e

 (
u

s
)

FFT Size

FFTW

XFFT

XFFT Pipelined

Page 5

Figure 4 shows the processing times for FFT sizes larger than 1024 points. For the 16384 point FFT the
processing time for FFTW is 2215 microseconds, the blocking XFFT is 222 microseconds, and the non-
blocking XFFT implementation comes in at 77 microseconds. That corresponds to a speed up between
10X and 29X for executing FFT operations in the PL over the ARM processor.

Figure 4 – FFT Processing Times (2048 – 16384 point)

As mentioned previously, smaller FFT sizes have a difficult time overcoming the data movement overhead.
One way to get around this is to group multiple small transfers into one large transfer, i.e. group 100 16-
point FFT data sets into one 1,600 word data transfer. Figure 5 below shows the results of doing this with
1,024 16-point FFTs. As shown in Figure 5, the average execution time for a 16-point FFT running in
programmable logic is drastically reduced and now out performs the FFTW implementation.

Figure 5 – 16-point FFT Processing Times with Large Data Transfer
(Note: HDL FFT was hand-written in C and compiled into programmable-logic using SDSoC)

0

500

1,000

1,500

2,000

2,500

2048 4096 8192 16384

P
ro

c
e

s
s
in

g
 T

im
e

 (
u

s
)

FFT Size

FFTW

XFFT

XFFT Pipelined

0.000

0.050

0.100

0.150

0.200

0.250

0.300

16

P
ro

c
e

s
s
in

g
 T

im
e

 (
u

s
)

FFT Size

FFTW

HDL FFT

Page 6

Table 2 below summarizes the implementation accuracy using the mean-square-error (MSE) when
compared to a double-precision MATLAB® model. The MSE statistic provides the average of the square
difference between the single-precision floating-point FFT implementation and the double-precision
floating-point MATLAB model. A small MSE indicates a good overall match between the model and the
implementation. As indicated in Table 2, the FFTW and XFFT implementations closely match the MATLAB
model.

FFT accuracy compared to double-precision MATLAB model

FFT Size FFTW Mean Square
Error

XFFT Mean Square Error

8 1.7e-12 1.7e-12

16 3.0e-12 2.9e-12

32 4.9e-12 5.1e-12

64 1.2e-11 1.2e-11

128 2.3e-11 2.1e-11

256 4.3e-11 4.4e-11

512 8.9e-11 9.2e-11

1024 1.9e-10 1.8e-10

2048 3.7e-10 3.6e-10

4096 7.4e-10 7.1e-10

8192 1.5e-09 1.5e-09

16384 3.1e-09 2.9e-09

Table 2 – FFT Implementation Accuracy

Conclusion

This paper presented two options for implementing the Fast Fourier Transform in the Zynq UltraScale+
MPSoC device family from Xilinx. The first option was a software only implementation using the FFTW
open-source code library which runs on the ARM Cortex-A53 processor. The second option used the Xilinx
LogiCore IP to implement the FFT in programmable logic as an accelerator function. Significant gains were
achieved with the accelerator which boosted execution time performance by a factor of 29 for the 16384-
point FFT size. Smaller FFT sizes have difficulty overcoming the data movement overhead, but
optimization can be achieved through strategic planning and control of data movement between the
processing system and programmable logic. For the 16-point FFT size, execution speedup of 2.6X is
possible with an accelerator when compared to the FFTW library running on the A53 processor.

Page 7

Appendix A: Compiling FFTW for the ARM Cortex-A53
processor
This section describes the steps necessary to compile the FFTW library for use with the Zynq UltraScale+
MPSoC application processor. The following steps assume that appropriate Xilinx tools have been installed
and the OS being targeted is Linux. The procedure below can be performed on a Windows machine, but
it is recommended that a Linux machine is used (Note: the steps outlined below have not been tested in
the Windows environment). Anywhere the <> brackets are used requires a replacement with a path for
your specific environment – the text has also been changed to orange for your convenience.

1. Download the FFTW 3.3.7 source code from www.fftw.org/download.html and extract to your

desired location, i.e. ~/fft_lib/fftw/.

2. Create a build directory in ~/fft_lib/fftw, i.e. ~/fft_lib/fftw/build

3. Change directory to ~/fft_lib/fftw/build

4. Create an install directory in ~/fft_lib/fftw/build i.e. ~/fft_lib/fftw/build/install

5. Setup your environment by executing the following on the Linux command line (assumes bash

shell is being used)

a. export CROSS_COMPILE=aarch64-linux-gnu-

b. source <Xilinx-install-path>/SDK/2017.4/settings64.sh

6. Create a toolchain.make file with the following contents (this is for the A53 architecture, the A9

architecture uses a different toolchain):

set(CMAKE_SYSTEM_NAME Linux)

set(CMAKE_SYSTEM_PROCESSOR arm)

set(CMAKE_C_COMPILER aarch64-linux-gnu-gcc)

set(CMAKE_CXX_COMPILER aarch64-linux-gnu-g++)

set(CMAKE_INSTALL_PREFIX <full-path-to-your-fftw-directory>/build/install)

set(CMAKE_FIND_ROOT_PATH <Xilinx-install-

path>/SDK/2017.4/gnu/aarch64/lin/aarch64-linux/bin)

7. At the Linux command prompt execute:

cmake –D CMAKE_TOOLCHAIN_FILE=toolchain.make –D CMAKE_INSTALL_PREFIX=<full-

path-to-your-fftw-directory>/build/install <full-path-to-your-fftw-directory>

8. When cmake completes execute:
ccmake .

Note: The rest of these instructions assume that ~/fft_lib/fftw is the location you

extracted the source files to. If you used a different location then adjust accordingly.

http://www.fftw.org/download.html

Page 8

9. A menu will open that looks like:

Navigation within the cmake menu is performed using the arrow keys on your keyboard. To

change/edit an option, navigate to the appropriate line and then press enter on the keyboard.

a. Change BUILD_SHARED_LIBS to OFF by pressing enter on your keyboard

b. Move the cursor to the ENABLE_FLOAT line and change it to ON by pressing enter on your

keyboard

c. Type c to configure

d. Type g after configuration completes to generate the Makefile and exit the cmake menu

10. At the Linux command prompt execute:
make

11. When make completes execute the following at the Linux command prompt:
make install

12. The following files will be populated in your ~/fft_lib/fftw/build/install directory

lib/libfftw3f.a

include/fftw3.h

These two files are needed for your SDSoC environment to correctly include and link the FFTW

library

13. In your SDSoC project (assuming you have a project already set up that you want to include

FFTW in, if not create one)

a. Right-click on the project you want to add FFTW to and select C/C++ Build Settings

Page 9

b. Under the C/C++ Build  Environment menu set a build variable named FFTLIB_DIR

that points to your fft_lib directory

c. Click on Settings under C/C++ Build

d. Assuming you are using C++, expand the SDS++ Compiler  Tool Settings. If you

are using C then expand the SDSCC Compiler  Tool Settings.

e. Under SDS++ Compiler  Directories add the path location of your include directory,

i.e. ${FFTLIB_DIR}/fftw/build/install/include directory

Page 10

f. Under SDS++ Linker  Libraries add fftw3f to the Libraries dialog and the path

location of the library (i.e. ${FFTLIB_DIR}/fftw/build/install/lib) to the Library

search path dialog

14. Click OK and exit the project settings menu

15. You have successfully included the FFTW library for your ARM Cortex-A53 processor, see the

fftw3.h header file for function prototypes and check out

http://www.fftw.org/index.html#documentation for appropriate usage of the library functions

http://www.fftw.org/index.html#documentation

Page 11

Appendix B: Creating a C-callable library for the Xilinx
LogiCore IP FFT (v9.0)
Two different methods were employed when creating the C-callable XFFT library. This section covers both
methods and why they were used. Anywhere the <> brackets are used requires a replacement with a path
for your specific environment – the text has also been changed to orange for your convenience.

Method 1: Direct packaging of the XFFT IP
This method packages the XFFT IP directly without opening Vivado® and allows for full customization of
the XFFT IP. There are some issues with using the run-time configurable transform length option, which
will be explained in more detail for method 2. The following steps outline packaging of a C-callable library
using a static FFT size and using the Xilinx LogiCore XFFT (v9.0) IP. These steps follow the method
defined in Appendix E of Xilinx UG1027 (v2017.4).

1. Create a folder to put your files, i.e. ~/fft_lib/xfft

Create a header file containing constants and function prototypes for the XFFT functions being

compiled. For this example there are two functions

The xfft() function is used to call the accelerator while xfft_config() is used to configure the

accelerator (i.e. forward versus inverse, etc.). Each argument must map to a physical AXI Interface
on the underlying accelerator. For detailed port information for the XFFT IP please see PG109.

Note: The data type for x & y is given as uint64_t. The XFFT core has a 64-bit AXI input interface

that expects the imaginary component in the upper 32-bits and the real component in the lower

32-bits. We could create a struct or use the complex<float> type instead of uint64_t and rely

on the SDSoC compiler to pack the data into a 64-bit container before sending it to the XFFT
accelerator. The important thing is making sure the size of the data being transferred is aligned
with the size expected by the accelerator.

Page 12

2. Create function definition files which have empty function bodies

Note: UG1127 states that stdlib.h and stdio.h must be included in the function definition file.

3. Create the IP configuration file

The IP configuration file sets parameters for the IP which would typically correspond to a HDL

generic parameter. For example, the XFFT IP has a parameter called data_format which is set

to floating_point below. Chapter 4 of PG109 lists all of the available User Parameters for the

XFFT IP as well as acceptable values.

Page 13

4. Create the function argument map

The purpose of the function argument map is to map software arguments to physical interfaces

on the accelerator.

UG 1027 provides a description of each parameter within the function map file. Additional
information is provided below.

 The fcnName argument corresponds to the software function being mapped and should

match the function name from the xfft.cpp file exactly

 The componentRef argument corresponds to the name of the underlying accelerator IP

which is taken from the IP-XACT VNLV identifier and can typically be found in the

component.xml file created when the IP is packaged with Vivado

 xd:arg xd:name is the name of the software argument

 xd:arg xd:busInterfaceRef is the prefix for the interface to which the argument maps

For example, if the accelerator has an AXI interface named S_AXI_DATA which has

signals S_AXI_DATA_tdata, S_AXI_DATA_tvalid, etc. then the prefix is S_AXI_DATA

 xd:arg xd:arraySize is the size of the array being mapped to hardware

o For the axis interface type this must be at least 1, which is why the config

argument for function xfft_config() is an array of size 1

There needs to be a separate function map for each software function, but they can be co-located

as shown above. You can see that the xfft_config() function maps to the S_AXI_CONFIG

(configuration) interface of the XFFT IP core. It is possible to get rid of the xff_config() function

and add a new argument to xfft(). However, it’s best to separate configuration from processing

so the accelerator does not get configured each time it is called. This in turn reduces the processing
overhead. The accelerator can be configured once at the beginning of the application and then
called multiple times before reconfiguring.

Page 14

5. Packaging the IP

a. There is a great Makefile example from the FIR filter sample project (<install

directory>/SDx/2017.4/samples/fir_lib/build/Makefile) that can be modified for

use with the XFFT. You will need to make the following modifications:

1. Replace all instances of libfir with libxfft

2. Remove lines containing fir_reload

3. Replace all instances of fir_compiler with xfft

4. Replace all instances of fir with xfft

5. Replace all instances of .c with .cpp

6. Change lines containing –vlnv xilinx.com:ip:fir_compiler:7.2 to
–vlnv xilinx.com:ip:xfft:9.0

7. Add the target CPU option –target-cpu cortex-a53

8. add the –ip-repo option to point to the Xilinx IP directory located in <install
directory>/Vivado/2017.4/data/ip/Xilinx

b. The updated make file command should be

libxfft.a: xfft.cpp xfft.h xfft.fcnmap.xml xfft.params.xml

 sdslib -lib libxfft.a \

 xfft xfft.cpp \

 xfft_config xfft_config.cpp \

 -vlnv xilinx.com:ip:xfft:9.0 \

 -ip-map xfft.fcnmap.xml \

 -ip-params xfft.params.xml \

 -target-cpu cortex-a53 \

 -ip-repo <install directory>/Vivado/2017.4/data/ip/xilinx

6. Open the Linux terminal if not already open and execute

source <install directory>/SDx/2017.4/settings64.sh

7. From the terminal navigate to the location where you saved your header file, empty function

definition file, parameters XML file, function map XML file, and Makefile – if they are not all in the

same directory move them there now (i.e. ~/fft_lib/xfft/)

8. At the command line type make libxfft.a and press enter

9. After the build completes you should see a libxfft.a file in the directory. This file is used by the

SDS++ linker to include the accelerator in your SDSoC project.

Page 15

10. To include your C-callable IP in SDSoC

a. Right-click on the project you want to add XFFT to and select C/C++ Build Settings

b. Assuming you are using C++, expand the SDS++ Compiler under the Tool Settings

tab. If you are using C then expand the SDSCC Compiler.

c. Under SDS++ Compiler  Directories add the path location of your directory

containing the xfft.h file (i.e. /home/<user>/fft_lib/xfft – Note: figure below uses

environment variable FFTLIB_DIR defined in Appendix A as /home/<user>/fft_lib)

d. Under SDS++ Linker  Libraries add xfft to the Libraries (-l) dialog and the

path location of the libxfft.a library (i.e. ${FFTLIB_DIR}/xfft) to the Library search

path (-L) dialog (figure below)

Page 16

11. Click OK and exit the project settings menu

12. You have successfully included the XFFT library

a. To use XFFT make sure to call xfft_config() with the correct configuration parameters

before calling xfft()

b. You do not need to specify the xfft() function for hardware acceleration within the

SDSoC GUI – C-callable IP are hardware accelerated by definition

c. Configuration parameters are dependent on your implementation and will vary based on

how you parameterized the XFFT IP in your params.xml file – for more details on the

XFFT configuration interface see PG109

Method 2: Packaging Using a HDL Wrapper
There are some issues with packaging the XFFT IP directly with the run-time configurable transform length
configuration option. In order to transfer a variable amount of data using SDSoC from the PS to the PL,
the data copy (or zero_copy) pragma must be used to specify the amount of data. The copy pragma can
use a run-time determinable parameter to decide how much data to move, but the parameter used to
compute this information must be part of the function call. The following example illustrates this point.

Example – using copy pragma to specify variable length transfer between PS and PL:

In the above example the size parameter is needed in the function prototype to determine the amount of
data to move from PS to PL. For C-callable IP, there must be a one-to-one mapping between the function
arguments and the ports on the IP. Thus, there must be an interface port on the IP that we can map the
size argument to. This is where the HDL wrapper comes in. The HDL wrapper provides an AXI-Stream
interface for the size argument that is left unconnected internally. That way SDSoC requirements are
satisfied and we can use a run-time configurable FFT size. The following steps work through creating and
packaging the XFFT IP using Vivado.

1. Create a Vivado project named fft_ip and click Next

Page 17

2. For the project type select RTL Project and check the “Do not specify sources at this time” box

then click Next

3. Select the Avnet UltraZed-3EG IO Carrier Card board and click Next
Note: this step assumes that you have already installed the UltraZed IO Carrier Card board
definition files which can be found at
http://zedboard.org/sites/default/files/documentations/UltraZed_Board_Definition_Files_v2017_2_
Release_All_CC_5_0.zip)

4. Click Finish to create the project

http://zedboard.org/sites/default/files/documentations/UltraZed_Board_Definition_Files_v2017_2_Release_All_CC_5_0.zip
http://zedboard.org/sites/default/files/documentations/UltraZed_Board_Definition_Files_v2017_2_Release_All_CC_5_0.zip

Page 18

5. Create a new block design by clicking on “Create Block Design” under the Flow Navigator window

a. Name the block design xfft and click OK

6. Add the Fast Fourier Transform IP to the block design canvas

7. Double-click the IP to configure

a. On the Configuration tab

i. Set the Transform Length to the desired maximum.

For this study the maximum was set to 16384

ii. Set the Architecture to “Pipelined, Streaming I/O”

iii. Check the “Run Time Configurable Transform Length” box

Page 19

b. On the Implementation tab

i. Set Data Format to “Floating-Point”

ii. Set Output Ordering to “Natural Order”

iii. Leave other fields with the default values

Page 20

c. On the Detailed Implementation tab

i. Under Optimize Options set the Complex Multipliers option to “Use 4-multiplier

structure”

d. Click OK to finish customizing the IP

Page 21

8. Make the XFFT IP ports external

a. Right-click on M_AXIS_DATA and select “Make External”. Vivado will add “_0” to the

end of the port name, so modify the port to remove the “_0”

b. Repeat step (a) for the aclk, S_AXIS_DATA, and S_AXIS_CONFIG ports

Page 22

9. Create a HDL wrapper file

a. In the Sources window right click on xfft and select “Create HDL Wrapper”

b. Choose “Copy generated wrapper to allow user edits” option in the pop-up dialog and

click OK

10. Add an AXI-Stream interface to the HDL wrapper for the “size” argument to map to

Page 23

11. Synthesize the design. When synthesis completes click on Cancel to close the pop-up

12. Package the project as IP

a. Go to Tools  Create and Package New IP

b. Click Next

c. Choose “Package your current project” and click Next

d. Set the IP Location to your desired output path (i.e. ~/ip) and select “Include IP generated

files” then click Next

Page 24

e. Click Finish and OK if you get a pop-up message about copying IP to your output location

f. On the “New IP Creation” window click Finish

g. A new Vivado project will open

i. On the “Package IP” window under “Packaging Steps > Identification” fill out the

information for your IP. This will be used later during the C-Callable IP

packaging steps in SDSoC

ii. Under “Packaging Steps > Review and Package” click Package IP

h. Close the Vivado project when the IP packaging has completed

13. Change directory to the IP output location (i.e. ~/ip)

a. Create a new directory using the VLNV format (Vendor, library, name, and version). This

information was used in step 11.g.i.

For example, if your VLNV was

 Vendor = avnet.com

 Library = c_ip

 Name = xfft_wrapper

 Version = 1.0

Then you would create a directory named avnet.com_c_ip_xfft_wrapper_1.0.

Copy the contents of the IP output to your newly created directory.

Your directory structure should look like:

Page 25

14. The remainder of this procedure follows all steps outlined in Method 1 with a few minor

differences noted below

a. Update xfft.h, xfft.cpp, and xfft_config.cpp to account for port changes and to add data

copy pragmas

 Note: argument config of function xfft_config changed from an 8-bit to 16-bit data type to

 allow for run-time selection of the FFT size

Page 26

b. Update the fncmap.xml file to incorporate the size argument, change the componentRef

(and possibly the fcnName if your C-code function name changed) to the name of the IP

that was packaged, i.e. xfft_wrapper, and update the configuration data width to 16. An

updated function map is shown in the figure below.

c. Update params.xml file to remove IP customization parameters

d. Update –ip-repo flag in your Makefile to point to the directory where your IP resides, i.e.

~/ip (not ~/ip/avnet.com_c_ip_xfft_wrapper_1.0)

e. Complete IP packaging as defined in Method 1 starting with step 6.

	Introduction
	Environment
	Test Setup
	Results
	Conclusion
	Appendix A: Compiling FFTW for the ARM Cortex-A53 processor
	Appendix B: Creating a C-callable library for the Xilinx LogiCore IP FFT (v9.0)
	Method 1: Direct packaging of the XFFT IP
	Method 2: Packaging Using a HDL Wrapper

