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Introduction 
 

The Fast Fourier Transform (FFT) is one of the fundamental building blocks of Digital Signal Processing 
(DSP) and Signal Analysis.  Due to its frequent use, many device manufacturers offer code libraries and 
intellectual property (IP) optimized for their architecture in order to achieve the highest possible 
performance.  Xilinx, for example, offers a fully customizable FFT IP core that is optimized for their FPGA, 
Zynq® SoC, and Zynq MPSoC programmable logic devices.  When it comes to general purpose computers 
there are a few open source code libraries.  One such open source library is the Fastest Fourier Transform 
in the West (FFTW) library which can be obtained from www.fftw.org.   

This paper looks at the performance of two different single-precision floating-point FFT implementations 
using a Xilinx Zynq UltraScale+TM MPSoC device and the SDSoC Development Environment.  The first 
implementation uses version 3.3.7 of the FFTW library compiled for the ARM® Cortex®-A53 processor within 
a Xilinx ZU3EG device.  The second implementation is a FPGA accelerator using the Xilinx LogiCoreTM IP 
FFT version 9.0 (XFFT) running in the programmable logic of the ZU3EG device.    

Environment 
 

The Avnet® UltraZed-EGTM Starter Kit was chosen as the test platform for evaluating FFT performance.  
The UltraZed features the Xilinx Zynq UltraScale+ MPSoC ZU3EG device.  The ZU3EG device features a 
Processing System (PS) containing quad-core ARM Cortex-A53 application processors (APU), dual-core 
ARM Cortex-R5 real-time processors (RPU), and an ARM MaliTM-400 MP2 GPU.  Linux was chosen as the 
host operating system which provides symmetric multi-processing support.  For an apples-to-apples 
comparison, this paper only looks at running the FFTW library on a single APU core running at 1.1GHz.   

The ZU3EG device also features FPGA programmable logic (PL) with 360 dedicated DSP slices to support 
heavy computational workloads.  The XFFT running in PL operates at a 300 MHz clock rate using the 
pipelined-streaming I/O architecture.  During execution of the XFFT, the PS offloads processing to the PL 
and then waits for the results to be computed.  This processing model is characteristic of a heterogeneous 
compute system with a host processor and co-processor accelerator.  The Xilinx Zynq UltraScale+ MPSoC 
architecture combines the heterogeneous system into a single chip solution.   

The SDSoC platform for the UltraZed-EG Starter Kit can be downloaded from the zedboard.org website 
using the link http://www.zedboard.org/content/ultrazed-3eg-starter-kit-sdsoc-platform-sdsoc-20172.  The 
platform is built using the 2017.2 Xilinx tool suite, but can be used with the 2017.4 release without issue.  
For more details on the UltraZed-EG Starter Kit visit http://www.zedboard.org/product/ultrazed-eg-starter-
kit.  

Test Setup 
 

Xilinx offers a feature-rich software defined development environment for implementing complex algorithms 
in embedded processors and FPGA fabric.  One such tool is the SDSoC Development Environment.  
SDSoC stands for Software Defined System-on-Chip and allows for easy acceleration of software defined 
functions using FPGA programmable logic.  SDSoC takes functions defined in C/C++ and moves them to 
FPGA fabric for acceleration.  More details on SDSoC can be found on the Xilinx website at 
https://www.xilinx.com/sdsoc.    

For the purpose of this paper, SDSoC is the perfect environment to run FFT implementations in both 
software and in FPGA fabric.  Thus, a software based test bench was created as the main application 
calling both the FFTW and XFFT libraries.  FFT execution time performance was measured using a built-
in high-resolution timer operating at the 1.1GHz APU clock.  Figure 1 depicts a block diagram of the SDSoC 
based test bench.   

http://www.fftw.org/
http://www.zedboard.org/content/ultrazed-3eg-starter-kit-sdsoc-platform-sdsoc-20172
http://www.zedboard.org/product/ultrazed-eg-starter-kit
http://www.zedboard.org/product/ultrazed-eg-starter-kit
https://www.xilinx.com/sdsoc
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Figure 1 – SDSoC Test bench 

Two methods of measuring execution time performance were used for XFFT analysis.  The first method 
measures the average time of a blocking XFFT function call.  The second method measures the average 
time of a non-blocking XFFT function call.  Both methods perform 1000 function calls and compute the 
average execution time per call.  With non-blocking function calls the SDSoC application continues 
execution after calling the PL accelerator without waiting for the accelerator to finish processing.  A blocking 
function call waits for the PL accelerator to complete processing before proceeding.  Performing non-
blocking function calls helps overcome the overhead of transferring data between the PS and PL because 
the next set of data can be loaded while the current data is being processed.  Figure 2 demonstrates the 
processing flow for the two measurement methods. 

 

Figure 2 – PL Accelerator Execution Model 
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Results 
 

Table 1 below gives the average round-trip processing times per function call for the FFTW and XFFT 
implementations for power-of-two FFT sizes ranging from 8 to 16384.  Round-trip processing time includes 
any overhead associated with data movement between PS and PL.   

FFT execution performance using FFTW and XFFT 
(FFTW in ARM Cortex-A53 @ 1.1GHz; XFFT in Xilinx PL @ 300MHz) 

FFT Size 
FFTW  

Execution Time (us) 
Blocking XFFT  

Execution Time (us) 
Non-blocking XFFT  
Execution Time (us) 

8 0.2 2.1 9.3 

16 0.3 2.2 9.4 

32 0.8 2.6 9.5 

64 1.4 3.2 9.7 

128 3.0 4.2 9.6 

256 8.2 5.9 10.0 

512 21.5 9.4 10.3 

1024 58.9 16.2 12.9 

2048 151.3 30.0 14.2 

4096 442.8 57.3 25.2 

8192 853.3 112.1 40.0 

16384 2215.0 221.6 76.6 

Table 1 – FFT Execution Time Performance 

As seen in Table 1 above and Figure 3 below, the XFFT implementation has a longer execution time than 
the FFTW library for FFT sizes smaller than 256.  For FFT sizes larger than 256 the XFFT implemented in 
the PL outperforms the FFTW library running on the ARM processor.  Figure 3 also shows XFFT sizes 8 
through 32 have approximately the same processing time.  This indicates that the overhead of moving the 
data from the PS to the PL is overshadowing the FFT computation time.   Thus, for small FFT sizes it does 
not make sense to offload a single FFT operation to a PL accelerator.   

 

Figure 3 – FFT Processing Times (8 – 1024 point) 
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Figure 4 shows the processing times for FFT sizes larger than 1024 points.  For the 16384 point FFT the 
processing time for FFTW is 2215 microseconds, the blocking XFFT is 222 microseconds, and the non-
blocking XFFT implementation comes in at 77 microseconds.  That corresponds to a speed up between 
10X and 29X for executing FFT operations in the PL over the ARM processor.   

 

Figure 4 – FFT Processing Times (2048 – 16384 point) 

As mentioned previously, smaller FFT sizes have a difficult time overcoming the data movement overhead.  
One way to get around this is to group multiple small transfers into one large transfer, i.e. group 100 16-
point FFT data sets into one 1,600 word data transfer.  Figure 5 below shows the results of doing this with 
1,024 16-point FFTs.  As shown in Figure 5, the average execution time for a 16-point FFT running in 
programmable logic is drastically reduced and now out performs the FFTW implementation. 

 

 

Figure 5 – 16-point FFT Processing Times with Large Data Transfer  
(Note: HDL FFT was hand-written in C and compiled into programmable-logic using SDSoC) 

 

0

500

1,000

1,500

2,000

2,500

2048 4096 8192 16384

P
ro

c
e

s
s
in

g
 T

im
e

 (
u

s
)

FFT Size

FFTW

XFFT

XFFT Pipelined

0.000

0.050

0.100

0.150

0.200

0.250

0.300

16

P
ro

c
e

s
s
in

g
 T

im
e

 (
u

s
)

FFT Size

FFTW

HDL FFT



 
 

Page 6 

Table 2 below summarizes the implementation accuracy using the mean-square-error (MSE) when 
compared to a double-precision MATLAB® model.  The MSE statistic provides the average of the square 
difference between the single-precision floating-point FFT implementation and the double-precision 
floating-point MATLAB model. A small MSE indicates a good overall match between the model and the 
implementation.  As indicated in Table 2, the FFTW and XFFT implementations closely match the MATLAB 
model.   

FFT accuracy compared to double-precision MATLAB model 
 

FFT Size FFTW Mean Square 
Error 

XFFT Mean Square Error 

8 1.7e-12 1.7e-12 

16 3.0e-12 2.9e-12 

32 4.9e-12 5.1e-12 

64 1.2e-11 1.2e-11 

128 2.3e-11 2.1e-11 

256 4.3e-11 4.4e-11 

512 8.9e-11 9.2e-11 

1024 1.9e-10 1.8e-10 

2048 3.7e-10 3.6e-10 

4096 7.4e-10 7.1e-10 

8192 1.5e-09 1.5e-09 

16384 3.1e-09 2.9e-09 

Table 2 – FFT Implementation Accuracy 

Conclusion 
 

This paper presented two options for implementing the Fast Fourier Transform in the Zynq UltraScale+ 
MPSoC device family from Xilinx.  The first option was a software only implementation using the FFTW 
open-source code library which runs on the ARM Cortex-A53 processor.  The second option used the Xilinx 
LogiCore IP to implement the FFT in programmable logic as an accelerator function.  Significant gains were 
achieved with the accelerator which boosted execution time performance by a factor of 29 for the 16384-
point FFT size.  Smaller FFT sizes have difficulty overcoming the data movement overhead, but 
optimization can be achieved through strategic planning and control of data movement between the 
processing system and programmable logic.  For the 16-point FFT size, execution speedup of 2.6X is 
possible with an accelerator when compared to the FFTW library running on the A53 processor. 
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Appendix A: Compiling FFTW for the ARM Cortex-A53 
processor 
This section describes the steps necessary to compile the FFTW library for use with the Zynq UltraScale+ 
MPSoC application processor.  The following steps assume that appropriate Xilinx tools have been installed 
and the OS being targeted is Linux.  The procedure below can be performed on a Windows machine, but 
it is recommended that a Linux machine is used (Note:  the steps outlined below have not been tested in 
the Windows environment).  Anywhere the <> brackets are used requires a replacement with a path for 
your specific environment – the text has also been changed to orange for your convenience. 

1. Download the FFTW 3.3.7 source code from www.fftw.org/download.html and extract to your 

desired location, i.e. ~/fft_lib/fftw/.   

 

 

 

 

2. Create a build directory in ~/fft_lib/fftw, i.e. ~/fft_lib/fftw/build 

 

3. Change directory to ~/fft_lib/fftw/build 

 

4. Create an install directory in ~/fft_lib/fftw/build i.e. ~/fft_lib/fftw/build/install 

 
5. Setup your environment by executing the following on the Linux command line (assumes bash 

shell is being used) 

a. export CROSS_COMPILE=aarch64-linux-gnu- 

b. source <Xilinx-install-path>/SDK/2017.4/settings64.sh 

 

6. Create a toolchain.make file with the following contents (this is for the A53 architecture, the A9 

architecture uses a different toolchain): 

 
set( CMAKE_SYSTEM_NAME Linux ) 

set( CMAKE_SYSTEM_PROCESSOR arm ) 

set( CMAKE_C_COMPILER aarch64-linux-gnu-gcc ) 

set( CMAKE_CXX_COMPILER aarch64-linux-gnu-g++ ) 

set( CMAKE_INSTALL_PREFIX <full-path-to-your-fftw-directory>/build/install ) 

set( CMAKE_FIND_ROOT_PATH <Xilinx-install-

path>/SDK/2017.4/gnu/aarch64/lin/aarch64-linux/bin ) 

 
7. At the Linux command prompt execute: 

cmake –D CMAKE_TOOLCHAIN_FILE=toolchain.make –D CMAKE_INSTALL_PREFIX=<full-

path-to-your-fftw-directory>/build/install <full-path-to-your-fftw-directory> 

 

8. When cmake completes execute: 
ccmake . 

 

Note: The rest of these instructions assume that ~/fft_lib/fftw is the location you 

extracted the source files to.  If you used a different location then adjust accordingly. 

 

http://www.fftw.org/download.html
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9. A menu will open that looks like: 

 
 
Navigation within the cmake menu is performed using the arrow keys on your keyboard.  To 

change/edit an option, navigate to the appropriate line and then press enter on the keyboard. 

 

a. Change BUILD_SHARED_LIBS to OFF by pressing enter on your keyboard 

 

b. Move the cursor to the ENABLE_FLOAT line and change it to ON by pressing enter on your 

keyboard 

 

c. Type c to configure 

 

d. Type g after configuration completes to generate the Makefile and exit the cmake menu 

 

10. At the Linux command prompt execute: 
make 

 

11. When make completes execute the following at the Linux command prompt: 
make install 

 

12. The following files will be populated in your ~/fft_lib/fftw/build/install directory 

 
lib/libfftw3f.a 

include/fftw3.h 

 

These two files are needed for your SDSoC environment to correctly include and link the FFTW 

library 

 

13. In your SDSoC project (assuming you have a project already set up that you want to include 

FFTW in, if not create one) 

 

a. Right-click on the project you want to add FFTW to and select C/C++ Build Settings 
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b. Under the C/C++ Build  Environment menu set a build variable named FFTLIB_DIR 

that points to your fft_lib directory 

 

 

c. Click on Settings under C/C++ Build 

 

d. Assuming you are using C++, expand the SDS++ Compiler  Tool Settings.  If you 

are using C then expand the SDSCC Compiler  Tool Settings. 

 

e. Under SDS++ Compiler  Directories add the path location of your include directory, 

i.e. ${FFTLIB_DIR}/fftw/build/install/include directory 
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f. Under SDS++ Linker  Libraries add fftw3f to the Libraries dialog and the path 

location of the library (i.e. ${FFTLIB_DIR}/fftw/build/install/lib) to the Library 

search path dialog 

 

 

14. Click OK and exit the project settings menu 

 

15. You have successfully included the FFTW library for your ARM Cortex-A53 processor, see the 

fftw3.h header file for function prototypes and check out 

http://www.fftw.org/index.html#documentation for appropriate usage of the library functions 

  

http://www.fftw.org/index.html#documentation
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Appendix B: Creating a C-callable library for the Xilinx 
LogiCore IP FFT (v9.0) 
Two different methods were employed when creating the C-callable XFFT library.  This section covers both 
methods and why they were used.  Anywhere the <> brackets are used requires a replacement with a path 
for your specific environment – the text has also been changed to orange for your convenience. 

Method 1: Direct packaging of the XFFT IP 
This method packages the XFFT IP directly without opening Vivado® and allows for full customization of 
the XFFT IP.  There are some issues with using the run-time configurable transform length option, which 
will be explained in more detail for method 2.  The following steps outline packaging of a C-callable library 
using a static FFT size and using the Xilinx LogiCore XFFT (v9.0) IP.  These steps follow the method 
defined in Appendix E of Xilinx UG1027 (v2017.4).   

1. Create a folder to put your files, i.e. ~/fft_lib/xfft 

Create a header file containing constants and function prototypes for the XFFT functions being 

compiled.  For this example there are two functions 

 

 

 

The xfft() function is used to call the accelerator while xfft_config() is used to configure the 

accelerator (i.e. forward versus inverse, etc.).  Each argument must map to a physical AXI Interface 
on the underlying accelerator.  For detailed port information for the XFFT IP please see PG109. 
 
 

 
 
 
 
 
 
 
  

Note: The data type for x & y is given as uint64_t.  The XFFT core has a 64-bit AXI input interface 

that expects the imaginary component in the upper 32-bits and the real component in the lower 

32-bits.  We could create a struct or use the complex<float> type instead of uint64_t and rely 

on the SDSoC compiler to pack the data into a 64-bit container before sending it to the XFFT 
accelerator.  The important thing is making sure the size of the data being transferred is aligned 
with the size expected by the accelerator. 
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2. Create function definition files which have empty function bodies 

 

 
 

 
 
Note: UG1127 states that stdlib.h and stdio.h must be included in the function definition file. 

 
 

3. Create the IP configuration file 

 

The IP configuration file sets parameters for the IP which would typically correspond to a HDL 

generic parameter.  For example, the XFFT IP has a parameter called data_format which is set 

to floating_point below.  Chapter 4 of PG109 lists all of the available User Parameters for the 

XFFT IP as well as acceptable values.    
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4. Create the function argument map 

 

The purpose of the function argument map is to map software arguments to physical interfaces 

on the accelerator.   

 

UG 1027 provides a description of each parameter within the function map file.  Additional 
information is provided below. 

 The fcnName argument corresponds to the software function being mapped and should 

match the function name from the xfft.cpp file exactly   

 The componentRef argument corresponds to the name of the underlying accelerator IP 

which is taken from the IP-XACT VNLV identifier and can typically be found in the 

component.xml file created when the IP is packaged with Vivado 

 xd:arg xd:name is the name of the software argument 

 xd:arg xd:busInterfaceRef is the prefix for the interface to which the argument maps 

 

For example, if the accelerator has an AXI interface named S_AXI_DATA which has 

signals S_AXI_DATA_tdata, S_AXI_DATA_tvalid, etc. then the prefix is S_AXI_DATA 

 

 xd:arg xd:arraySize is the size of the array being mapped to hardware 

o For the axis interface type this must be at least 1, which is why the config 

argument for function xfft_config() is an array of size 1 

There needs to be a separate function map for each software function, but they can be co-located 

as shown above.  You can see that the xfft_config() function maps to the S_AXI_CONFIG 

(configuration) interface of the XFFT IP core.  It is possible to get rid of the xff_config() function 

and add a new argument to xfft().  However, it’s best to separate configuration from processing 

so the accelerator does not get configured each time it is called.  This in turn reduces the processing 
overhead.  The accelerator can be configured once at the beginning of the application and then 
called multiple times before reconfiguring.   
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5. Packaging the IP 

a. There is a great Makefile example from the FIR filter sample project (<install 

directory>/SDx/2017.4/samples/fir_lib/build/Makefile) that can be modified for 

use with the XFFT.  You will need to make the following modifications: 

1. Replace all instances of libfir with libxfft 

2. Remove lines containing fir_reload 

3. Replace all instances of fir_compiler with xfft 

4. Replace all instances of fir with xfft 

5. Replace all instances of .c with .cpp 

6. Change lines containing –vlnv xilinx.com:ip:fir_compiler:7.2 to  
–vlnv xilinx.com:ip:xfft:9.0 

7. Add the target CPU option –target-cpu cortex-a53  

8. add the –ip-repo option to point to the Xilinx IP directory located in <install 
directory>/Vivado/2017.4/data/ip/Xilinx 

 

b. The updated make file command should be 

 
libxfft.a: xfft.cpp xfft.h xfft.fcnmap.xml xfft.params.xml 

 sdslib -lib libxfft.a \ 

   xfft xfft.cpp \ 

   xfft_config xfft_config.cpp \ 

   -vlnv xilinx.com:ip:xfft:9.0 \ 

   -ip-map xfft.fcnmap.xml \ 

   -ip-params xfft.params.xml \ 

   -target-cpu cortex-a53 \ 

   -ip-repo <install directory>/Vivado/2017.4/data/ip/xilinx 

 
6. Open the Linux terminal if not already open and execute  

source <install directory>/SDx/2017.4/settings64.sh  

 

7. From the terminal navigate to the location where you saved your header file, empty function 

definition file, parameters XML file, function map XML file, and Makefile – if they are not all in the 

same directory move them there now (i.e. ~/fft_lib/xfft/) 

 

8. At the command line type make libxfft.a and press enter 

 

9. After the build completes you should see a libxfft.a file in the directory.  This file is used by the 

SDS++ linker to include the accelerator in your SDSoC project.   
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10. To include your C-callable IP in SDSoC 

a. Right-click on the project you want to add XFFT to and select C/C++ Build Settings 

b. Assuming you are using C++, expand the SDS++ Compiler under the Tool Settings 

tab. If you are using C then expand the SDSCC Compiler. 

c. Under SDS++ Compiler  Directories add the path location of your directory 

containing the xfft.h file (i.e. /home/<user>/fft_lib/xfft – Note: figure below uses 

environment variable FFTLIB_DIR defined in Appendix A as /home/<user>/fft_lib) 

 

d. Under SDS++ Linker  Libraries add xfft to the Libraries (-l) dialog and the 

path location of the libxfft.a library (i.e. ${FFTLIB_DIR}/xfft) to the Library search 

path (-L) dialog (figure below) 
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11. Click OK and exit the project settings menu 

 

12. You have successfully included the XFFT library 

a. To use XFFT make sure to call xfft_config() with the correct configuration parameters 

before calling xfft() 

b. You do not need to specify the xfft() function for hardware acceleration within the 

SDSoC GUI – C-callable IP are hardware accelerated by definition 

c. Configuration parameters are dependent on your implementation and will vary based on 

how you parameterized the XFFT IP in your params.xml file – for more details on the 

XFFT configuration interface see PG109 

 

Method 2: Packaging Using a HDL Wrapper 
There are some issues with packaging the XFFT IP directly with the run-time configurable transform length 
configuration option.  In order to transfer a variable amount of data using SDSoC from the PS to the PL, 
the data copy (or zero_copy) pragma must be used to specify the amount of data.  The copy pragma can 
use a run-time determinable parameter to decide how much data to move, but the parameter used to 
compute this information must be part of the function call.  The following example illustrates this point. 

Example – using copy pragma to specify variable length transfer between PS and PL: 

 

In the above example the size parameter is needed in the function prototype to determine the amount of 
data to move from PS to PL.  For C-callable IP, there must be a one-to-one mapping between the function 
arguments and the ports on the IP.  Thus, there must be an interface port on the IP that we can map the 
size argument to.  This is where the HDL wrapper comes in.  The HDL wrapper provides an AXI-Stream 
interface for the size argument that is left unconnected internally.  That way SDSoC requirements are 
satisfied and we can use a run-time configurable FFT size.  The following steps work through creating and 
packaging the XFFT IP using Vivado. 

1. Create a Vivado project named fft_ip and click Next 
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2. For the project type select RTL Project and check the “Do not specify sources at this time” box 

then click Next 

 

 
 

3. Select the Avnet UltraZed-3EG IO Carrier Card board and click Next 
Note:  this step assumes that you have already installed the UltraZed IO Carrier Card board 
definition files which can be found at 
http://zedboard.org/sites/default/files/documentations/UltraZed_Board_Definition_Files_v2017_2_
Release_All_CC_5_0.zip)  
 

 

 

4. Click Finish to create the project 

http://zedboard.org/sites/default/files/documentations/UltraZed_Board_Definition_Files_v2017_2_Release_All_CC_5_0.zip
http://zedboard.org/sites/default/files/documentations/UltraZed_Board_Definition_Files_v2017_2_Release_All_CC_5_0.zip
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5. Create a new block design by clicking on “Create Block Design” under the Flow Navigator window 

a. Name the block design xfft and click OK 

 

 
6. Add the Fast Fourier Transform IP to the block design canvas 

 

7. Double-click the IP to configure 

a. On the Configuration tab  

i. Set the Transform Length to the desired maximum.   

For this study the maximum was set to 16384 

ii. Set the Architecture to “Pipelined, Streaming I/O” 

iii. Check the “Run Time Configurable Transform Length” box 
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b. On the Implementation tab 

i. Set Data Format to “Floating-Point” 

ii. Set Output Ordering to “Natural Order” 

iii. Leave other fields with the default values 
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c. On the Detailed Implementation tab 

i. Under Optimize Options set the Complex Multipliers option to “Use 4-multiplier 

structure” 

 

d. Click OK to finish customizing the IP 

 

  



 
 

Page 21 

8. Make the XFFT IP ports external 

a. Right-click on M_AXIS_DATA and select “Make External”.  Vivado will add “_0” to the 

end of the port name, so modify the port to remove the “_0” 

 

 

 

 

b. Repeat step (a) for the aclk, S_AXIS_DATA, and S_AXIS_CONFIG ports 
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9. Create a HDL wrapper file  

a. In the Sources window right click on xfft and select “Create HDL Wrapper” 

 

b. Choose “Copy generated wrapper to allow user edits” option in the pop-up dialog and 

click OK 

 

 

10. Add an AXI-Stream interface to the HDL wrapper for the “size” argument to map to 
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11. Synthesize the design.  When synthesis completes click on Cancel to close the pop-up 

 
 

12. Package the project as IP 

a. Go to Tools  Create and Package New IP 

b. Click Next 

c. Choose “Package your current project” and click Next 

 

d. Set the IP Location to your desired output path (i.e. ~/ip) and select “Include IP generated 

files” then click Next 
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e. Click Finish and OK if you get a pop-up message about copying IP to your output location 

 

f. On the “New IP Creation” window click Finish 
 

g. A new Vivado project will open  

i. On the “Package IP” window under “Packaging Steps > Identification” fill out the 

information for your IP.  This will be used later during the C-Callable IP 

packaging steps in SDSoC 

 

ii. Under “Packaging Steps > Review and Package” click Package IP 

 

h. Close the Vivado project when the IP packaging has completed 

 

13. Change directory to the IP output location (i.e. ~/ip) 

a. Create a new directory using the VLNV format (Vendor, library, name, and version).  This 

information was used in step 11.g.i. 

 

For example, if your VLNV was 

 Vendor = avnet.com 

 Library = c_ip 

 Name = xfft_wrapper 

 Version = 1.0 

Then you would create a directory named avnet.com_c_ip_xfft_wrapper_1.0.   

Copy the contents of the IP output to your newly created directory.   

Your directory structure should look like: 
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14. The remainder of this procedure follows all steps outlined in Method 1 with a few minor 

differences noted below 

 
a. Update xfft.h, xfft.cpp, and xfft_config.cpp to account for port changes and to add data 

copy pragmas 

 

 
 

 
 

 
 

  Note: argument config of function xfft_config changed from an 8-bit to 16-bit data type to  

          allow for run-time selection of the FFT size 
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b. Update the fncmap.xml file to incorporate the size argument, change the componentRef 

(and possibly the fcnName if your C-code function name changed) to the name of the IP 

that was packaged, i.e. xfft_wrapper, and update the configuration data width to 16.  An 

updated function map is shown in the figure below. 

 
 

c. Update params.xml file to remove IP customization parameters 

 

 

d. Update –ip-repo flag in your Makefile to point to the directory where your IP resides, i.e. 

~/ip (not ~/ip/avnet.com_c_ip_xfft_wrapper_1.0) 
 

e. Complete IP packaging as defined in Method 1 starting with step 6.   
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