#### **APID New Products Update August, 2021**

# MIC21LV32/MIC21LV33 Stackable, Dual Phase Adaptive Constant On Time Controllers



A Leading Provider of Smart, Connected and Secure Embedded Control Solutions



Surya Talari & Ben Dowlat Analog Power & Interface Division Microchip Technology

Aug, 27, 2021

Step-Down (Buck) External SW





#### What Is MIC21LV32 And MIC21LV33

# New Best In Class 36V Input, High Current, Advanced Dual Phase Controller Featuring:

- Wide input voltage rating (4.5V to 36V operating, 40V max)
- Able to operate at VIN of 2V with external 5V bias
- 0.5% reference accuracy for -40 to 105° C
- 1% reference accuracy for -40 to 125° C
- Accurate Current Sharing Patented
- Stackable Operation (MIC21LV32) up to 8 phases (~200A) Patented
- Phase shedding, DCM for light load efficiency
- Droop feature adaptive voltage positioning to improve output Voltage accuracy, reduce output capacitor count and reduce solution size
- Precision enable Input For low standby current
- Able to work with MCU



#### 36V, Dual Phase ACOT Switching Buck Controller

- Input voltage range: 4.5V to 36V
- Adjustable output from 0.6V to 32V
- MIC21LV33 operate in two phases with phase shedding
- Accurate Current balancing between phases(Patent Issued)
- Accurate phasing between phases which are always 180° out of phase (Patent Issued)
- 200 KHZ to 800KHZ switching Frequency per phase
- Supports start up to pre-bias output
- Internal compensator for tight output regulation
- Supports Adaptive voltage positioning(AVP) or Droop
- Precision Enable function for low stand-by current
- External programmable soft start to reduce inrush current
- Programmable current limit and hiccup short circuit protection
- Compact size 5 X 5 mm 32-pin QFN
- -40°C to +125°C junction temperature range



→ MIC21LV33 Pins for phase shedding & OVP



#### 36V, Dual Phase ACOT Switching Buck Controller

- Input voltage range: 4.5V to 36V
- Adjustable output from 0.6V to 32V
- MIC21LV32 operate in CCM, stackable for multiphase operation up to 8 phases
- Accurate Current balancing between phases(Patent Issued)
- Accurate phasing between phases which are always 180° out of phase (Patent Issued)
- 200 KHZ to 800KHZ switching Frequency per phase
- Supports start up to pre-bias output
- Internal compensator for tight output regulation
- Supports Adaptive voltage positioning(AVP) or Droop
- Precision Enable function for low stand-by current
- External programmable soft start to reduce inrush current
- Programmable current limit and hiccup short circuit protection
- Compact size 5 X 5 mm 32-pin QFN
- -40°C to +125°C junction temperature range







## MIC21LV33 Dual-phase Operation - Steady state





Simplis
Simulation -

MIC21LV33 @ 2.5V,20A Output

**Evaluation Board -**



MIC21LV33 @ 2.5V,20A Output



#### MIC21LV33 - Load Transient



Scope Shot -MIC21LV33 @ 12V Input, Output 1A to 11A



#### **Simplis Simulation**

- MIC21LV33 @ 12V Input, Output 2A to 20A





## Adaptive Voltage Positioning (AVP), i.e., DROOP

- AVP is Not Dynamic Voltage Scaling(DVS) !-----Don't confuse
- Dynamic voltage scaling, or DVS, is a method of reducing the average power consumption in embedded systems.
- This is accomplished by reducing the switching losses of the system by selectively reducing the frequency and voltage of the system.

#### Why AVP?

#### **Processor**

- the core static currents will increase up to 150A;
- the dynamic current slew rate will rise up to 120A/ns;
- and the core voltage will reduce to 0.8V
- Moore's Law

#### Challenging for Voltage Regulator Module (VRM)

- Many output capacitors have been used to reduce the voltage spikes that occur during the transient period.
- Increasing the number of capacitors : cause size and cost issues

#### **VRM**





## Adaptive Voltage Positioning (AVP), i.e., DROOP

#### What is AVP?

- <u>concept was proposed by Intel</u>, by which the VRM should represent a constant output impedance. This means the output voltage will reduce with the higher output currents, and a significant number of output capacitors can be saved.
- transients between the two steady-state stages: no spikes and no oscillations.
- · The transient can take advantage of the entire voltage tolerance window.
- VRM equals an ideal voltage source in series with a constant resistor RO.
- Numerous Synonym: such as "Programmable Active Droop", "Active Voltage Positioning"
   "Adaptive Voltage Positioning", "Summing-Mode Control", "Intel Mobile Voltage Positioning
   (IMVP)" etc.











## MIC21LV33 – Droop Function





- Advantages 1: Reduced input capacitance
  - lower RMS and peak currents
  - provides less current stress on the upper MOSFET of each phase
  - At several points, the lin\_rms drops to zero due to ripple currents cancellation.



$$I_{CIN_{norm}\left(RMS\right)} = \sqrt{\left(D - \frac{m}{n}\right) \times \left(\frac{1 + m}{n} - D\right)}$$

- D = V<sub>OUT</sub> / V<sub>IN</sub>
- n = # of phases
- m = floor (n × D)



Normalized Input Capacitance RMS Current



- Advantages 2: Reduced output capacitance
  - ISUM, the AC portion of which gets absorbed by the output capacitance.
  - Smaller ripple current in the output capacitors lowers the overall output voltage ripple which in turn lowers the amount of capacitance needed to keep VOUT within tolerance.



**Inductor Ripple Current Waveforms** 



- Advantages 3: Transient Response
  - fewer output capacitors
  - reduced equivalent inductance (Lequ=Lsingle\_phase/phase number).
     With a smaller Lequ, charge can quickly be supplied from the supply to the output caps reducing undershoot.
  - overshoot is decreased by less energy stored in the inductors, which is shifted to the output capacitors when the phases are shut down.



- Advantages 4:Efficiency &Thermal Performance
- Phase management: Phase Shedding Operation to achieve the highest possible efficiency.



Efficiency vs Phase Number



A typical multiphase buck Efficiency Curve



## MIC21LV33 - Phase Shedding Operation



- Phase Shedding threshold is programmed through a resistor
- Hysteresis is 10% of threshold to cover range of FETs



## MIC21LV32 - Stacking for Multiphase

- Four MIC21LV32's can be stacked supporting up to 8 phases/200A
  - ONR(On-Time Request) pins need to tied together
  - GFB(Ground Feedback Remote Sense) pin of secondary need to be 5V
  - NPI (Next Phase In)pin of primary connects to APO (Active Phase Output) of first secondary NPI pin of last secondary connect to APO of primary
- Daisy chain operation



## MIC21LV32 4-Phase - Phasing & Sharing











**Evaluation Board** 



## **Load Transient Scope Shots**







 Load currents are equal both in steady state and during transient (Four Phase Operation)



#### **MCU Connections**



#### MCU can access:

**Enable Control** 

Frequency setting Control

**Phase Shedding Control** 

Input VIN telemetry

**IOUT Telemetry** 

Temperature Telemetry

**VOUT Telemetry** 



### MIC21LV32/33 EVBs — Available On Request





MIC21LV32 4Ø EVB Top and Bottom Views





MIC21LV33 2Ø EVB Top and Bottom Views



# 1-Phase Prototype- Top &bottom side







#### **Profile**

- ☐ The MIC21LV33 dual phase 12V to 1V80A Demo Board is used to demonstrate MIC21LV33 which is dual phase synchronous buck controller featuring a unique adaptive ON-time control architecture with Hyperlight Load® and phase shedding features and input EMI filter.
- Input Voltage: 12Vdc typical(4.5-36Vdc);
- Output: 1Vdc/80A dual phase;
- MCHP PN#

MIC21LV33YML-TR



## **Prototype-Top side**





# **Prototype-bottom side**



#### DCS Yorktown 16CH DDR4 Evaluation Board - Power

#### **Solution**







Surya.talari@microchip.com Ben.dowlat@microchip.com

Keith.peckham@microchip.com

**Thank You** 

