
Application Note AND9371/D

AxCode::Blocks
Quick Guide

Revision 2

2

TABLE OF CON TEN T S

1.Introduction ... 4
2.Installing AxCode::Blocks ... 6
3.Connecting the Hardware ... 6
4.Creating a New Project .. 7
5.Adding and Editing Files ... 9
6.Compiling the Project ... 10
7.Debugging the Project .. 10
8.Debugging Windows .. 11

8.1.Breakpoints ... 11
8.2.Registers ... 12
8.3.Disassembly .. 15
8.4.Memory dump .. 15
8.5.Watches .. 15
8.6.Pin Emulation ... 17
8.7.Debuglink .. 17

9.Troubleshooting Guide ... 17
9.1.Project does not compile .. 17
9.2.Project compiles, but debugging does not work .. 19

10.Contact Information ... 27

1. INTRODUCTION

Figure 1 shows a diagram of the ON Semiconductor AX8052 Development System
Architecture.

Radio Link parameters are set using the AX-RadioLAB GUI. AX-RadioLAB produces source
code, compiles it and downloads it into the target board.

AxCode::Blocks is the graphical Integrated Development Environment (IDE) for AX8052
projects. It is a customized version of the popular Code::Blocks IDE. It can be used to
further customize the AX-RadioLAB generated code, or it can be used to create new projects
(such as those that do not involve a radio link).

Both AX-RadioLAB and AxCode::Blocks talk to the ON Semiconductor Symbolic (command
line) Debugger (AXSDB). Normally, Users need not directly interact with AXSDB. AXSDB
can however be useful for automated or scripted tasks, thanks to its command line and TCL
scripting features.

The Debug Adapter provides the link between the developers workstation and the target
board.

www.onsemi.com AND9371/D

4 Introduction

Figure 1: ON Semiconductor AX8052 Development System
Architecture

This document should guide the reader through the installation of AxCode::Blocks and its
use to create, compile and debug a little project.

AX-RadioLAB is documented in a separate document.

For general issues regarding Code::Blocks, please refer to its manual:
http://www.codeblocks.org/docs/manual_en.pdf

www.onsemi.com AND9371/D

AX-RadioLAB AxCode::Blocks IDE

AXSDB Command
Line Debugger

Debug AdapterTarget Board

User Scripts

2. INSTALLING AXCODE::BLOCKS

The installer contains everything you need: the SDCC compiler, the AXSDB debugger,
example files and libraries and, of course, AxCode::Blocks.

• Launch the installer.

• After accepting the terms of agreement you are asked to select the components to
be installed. We strongly suggest to install all components. Failure to do so could
result in missing links in your toolchain.

• Choose where to install AXSDB (it is recommended to keep the default settings). Hit
Install.

• When asked if you want to install AxCode::Blocks too, click Yes: the corresponding
setup wizard is started. This one is quite similar to the previous one: go through it.

• Next, you want to install the SDCC compiler. Again, the installation is pretty
intuitive. Be sure to tick the option for adding the SDCC directory to the system
path.

• Wait until the process finishes and you are done!

3. CONNECTING THE HARDWARE

Please refer to the application note AX-RF-DVK2 Quick Start Instructions available from the
ON Semiconductor website: http://www.onsemi.com

www.onsemi.com AND9371/D

6 Creating a New Project

4. CREATING A NEW PROJECT

Start AxCode::Blocks. The first time AxCode::Block starts, it scans for installed compilers and presents a
list of the compilers found. Select SDCC as default.

Click on File → New → Project.

Choose Axsem AX8052 Project:

www.onsemi.com AND9371/D

A dialog will pop-up. Go through it and change the settings if needed. The following screenshots are
intended as examples.

www.onsemi.com AND9371/D

8 Creating a New Project

Clicking on Finish will create the new project. For your convenience the most important build options and
compiler preferences are set automatically.

ON Semiconductor also distributes example projects. Check the ON Semiconductor homepage for the
available examples.

www.onsemi.com AND9371/D

5. ADDING AND EDITING F ILES

An example source file has been included. You can open it by double-clicking its name on
the project tree:

You can add existing files to the project using the menu entry Project → Add Files.
You can add new files to the project using the menu entry File → New → File.

Open files are shown on the right pane and can be edited.

Warning: SDCC seems to have a bug. Do not use hyphens in your filenames. Underscores
are fine.

www.onsemi.com AND9371/D

10 Compiling the Project

6. COMPILING THE PROJECT

The most important function can be accessed through the compiler toolbar:

① Build Compile and link the project
② Rebuild Delete existing files and build
③ Abort Stop the building process
④ Build target The Debug target generates automatically debug informations

7. DEBUGGING THE PROJECT

Select the AXSEM Debugger under Debug → Active debuggers and make sure the corresponding toolbar
is visible (View → Toolbars → AXSEM Debugger).

Before the debugging process is started, the toolbar looks like this:

By hitting , the debugger is started. If no devices are found, an error message is issued① 1. If exactly one
device is found, the device is automatically connected. If more than one device is found, the user is
prompted to select one.

Furthermore, the user can decide to load the firmware to the device or to use the firmware already stored
in it.

If changes are made to the project since the last build, the project is automatically compiled.

When running, the toolbar changes it's appearance to

1 If you get an error message although a device is connected, you likely are missing the drivers. Open the Control Panel and
navigate to the Device Manager. Find the unrecognized devices (look for the exclamation marks) named “Microfoot Debug
Interface”, right-click them and choose to install or update the driver. Do not search online for the driver. As search directory
give the directory where you installed AXSDB followed by “\ftdi”, e.g. “C:\Program Files\AXSEM\AXSDB\ftdi”. Eventually, you
need to disconnect the device and restart AxCode::Blocks.

www.onsemi.com AND9371/D

2 3 41

1

The pause button stops the execution of the program to examine its state. The cursor inside the editor②

is moved to the line corresponding to the current instruction. Button does not stop the execution, but③

disconnects the device and exits the debugger. and are used to reset the microcontroller.④ ⑤

After hitting the pause button , other functions become enabled:②

⑥ Next line Execute the next line in the sourcecode
⑦ Step into Execute the next line, if it's a function step into it
⑧ Step out Continue execution until the end of the current frame
⑨ Next instruction Execute the next assembly instruction

Due to limitations in the debug information of 8052 compilers, the stepping commands , and ⑥ ⑦ ⑧

require the microcontroller to be single-stepped. It can therefore take a long time until these commands
terminate. It is always possible to stop one of these commands prematurely by hitting the pause button .②

Usually, it is preferable to set breakpoints or use the Run-To-Cursor feature over the stepping commands.

The drop-down menu can be used to open the debugging windows described in the next chapter.⑩

www.onsemi.com AND9371/D

2 3 4 5

9876 10

12 Debugging Windows

8. DEBUGGING W INDOWS

8.1. BREAKPOINTS

This window simply displays a list of the breakpoints set. In order to set a breakpoint, click
on the left of the corresponding line in the editor or hit F5. The same procedure removes an
already set bookmark.

8.2. REGISTERS

This window shows Microcontroller register contents while the Microcontroller is stopped.
Registers of ON Semiconductor Radio Chips or SoC functions are also displayed.

Registers are grouped into sections. Light gray bars show the section name, the + or – sign
to the left of the section name allows to show or hide the section.

The first line of the dialog shows the name of the chip. The chip is normally auto-detected.
Should auto-detection fail, the chip type can be manually set by right-clicking on the chip
name.

www.onsemi.com AND9371/D

Registers and their contents are shown in the remaining rows. The first column shows the
register name. The second column shows the current register contents as a hexadecimal
number. The third column displays the register contents as a decimal number; if this
number is greater or equal 32, it is also displayed as ASCII character. The fourth and fifth
columns display the address space and the address of the register, while the sixth column
displays a short description of the register.

Registers that have changed since the last processor break are displayed in red. Registers
that can cause side effects when read are not automatically read. They are displayed with a
light yellow background. Their values are also shown in light-gray, if they have not yet been
read.

www.onsemi.com AND9371/D

14 Debugging Windows

Registers can be (re-)read by either right-clicking into the row and selecting Read, or by
selecting the row and pressing the space-bar.

Register values can be changed by clicking into the second column and entering a number.
Numbers can be entered both in decimal format (eg. 18), as well as hexadecimal format
(eg. 0x12).

www.onsemi.com AND9371/D

8.3. D ISASSEMBLY

The disassembly window shows the disassembly of the current function. A yellow triangle
indicates the next instruction that is executed when the microcontroller is stepped or run. If
mixed mode is selected, assembly instructions are interspersed by C source lines.

8.4. MEMORY DUMP

This dialog allows to read a range in the memory of the microcontroller unit and displays it.

8.5. WATCHES

Watches allow the user to monitor the content of a variable which may be defined only in
the high-level programming language. The easiest way to add a watch is to right click on
the name of the variable and to choose the corresponding menu entry:

www.onsemi.com AND9371/D

16 Debugging Windows

The watch window is able to display complex variable types. The last line is empty; its
purpose is to allow adding watches simply by typing a name into the first column of the last
empty row. Watch variables can be deleted by right-clicking into the name field of the
watch to be deleted. A context menu then allows to rename or delete the watch.

www.onsemi.com AND9371/D

8.6. P IN EMULATION

This function emulates the two pins of the microcontroller occupied by the debugger. The
direction (input or output) is automatically detected. For both directions, the logic state of
the pin is shown. Additionally, the state of inputs can be toggled.

8.7. DEBUGLINK

This window provides a graphical front-end to the debuglink, a console-like input and
output interface to the microcontroller unit. Local echo can be turned on for your
convenience when the firmware is not providing a feedback. Please notice that the entry
field is only active when the debugger is running.

www.onsemi.com AND9371/D

18 Advanced Debugger Configuration

9. ADVANCED DEBUGGER CONFIGURATION

The advanced Debugger configuration window can be reached by selecting
Project→Properties… from the menu bar, and then clicking on the “Axsem Debugger” tab.

Whenever the CPU stops, for example because it hits a breakpoint or the user hits the
pause button, the debugger reads the current PC and looks up the file name and line
number corresponding to that PC in the debug information. If this file is found neither in the
open editor tabs, nor in the project directories, the debugger searches the directories listed
under “Additional debugger source file search dirs”. It is recommended to add the source
and include directories of all used libraries (such as libmf) to the directory list to enable
source level debugging even in library code.

www.onsemi.com AND9371/D

Flash Erase Mode specifies the strategy the debugger uses to erase the flash memory before
reprogramming. Bulk Erase, the default, sends a bulk erase command to the
microcontroller, thus erasing the complete memory. If the debugger knows the device key,
it saves and restores the calibration data in the last flash sector. Bulk erase may be issued
even without knowing the device key; the calibration data will be lost however. The
debugger warns you if it does not know the correct key and asks you to confirm to continue.
After a Bulk Erase, the device key is set to the Main Key configured below.

All Sectors Erase instructs the debugger to issue individual page erase commands to all
flash sectors that need to be reprogrammed. Flash sectors not needed by the program to be
loaded are erased if they contain data. The device key cannot be changed, unless the device
was using the default key. This option may be faster than Bulk Erase if only little changes
between download cycles.

Needed Sectors Erase instructs the debugger to issue individual page erase commands to all
flash sectors that need to be reprogrammed. Flash sectors not needed by the program will
be left as-is. The device key cannot be changed, unless the device was using the default
key. This option may be the fastest if only little changes between download cycles, however
left-over contents are not necessarily cleared.

In order to protect the intellectual property of the customer while still allowing full
debugging capability, use of the debug interface is protected by a 64 bit key. The debug
interface can only be used if the device key is known. The default key (as shipped by
ON Semiconductor, and after a bulk erase) is FFFFFFFFFFFFFFFF. Main Key specifies the key
the debugger should set to protect the debug interface.

Additional Keys lists keys that are tried as well when connecting the device when the main
key does not unlock the device. This is useful if multiple projects use different keys, and
devices from other projects should be used. If their keys are listed under Additional Keys,
the debugger will be able to retain the calibration data and reprogram the key to the Main
Key, when the Flash Erase Mode is set to Bulk Erase.

www.onsemi.com AND9371/D

20 ON Semiconductor Project Wizard

10. ON SEMICONDUCTOR PROJECT W IZARD

The new project wizard supports the creation of a skeleton project template for
ON Semiconductor microcontroller projects. Both SDCC and IAR compilers are fully
supported, with selectable code models.

The code structure of the example project's main.c looks like this:

#if defined(__ICC8051__)

#define coldstart 1

#define warmstart 0

//

// If the code model is banked, low_level_init must be declared

// __near_func elsa a ?BRET is performed

//

#if (__CODE_MODEL__ == 2)

__near_func __root char

#else

__root char

#endif

__low_level_init(void) @ "CSTART"

#else

#define coldstart 0

#define warmstart 1

uint8_t _sdcc_external_startup(void)

#endif

{

 DPS = 0;

 ...

 GPIOENABLE = 1;

 if (PCON & 0x40)

 return warmstart;

 return coldstart;

}

www.onsemi.com AND9371/D

#undef coldstart

#undef warmstart

#if defined(SDCC)

extern uint8_t _start__stack[];

#endif

void main(void)

{

#if !defined(SDCC) && !defined(__ICC8051__)

 _sdcc_external_startup();

#endif

#if defined(SDCC)

 __asm

 G$_start__stack$0$0 = __start__stack

 .globl G$_start__stack$0$0

 __endasm;

#endif

 ...

}

We need to distinguish the different compilers.

• SDCC

If available, SDCC arranges for a function named _sdcc_external_startup to be called
before main. The return value of this function determines whether static variables
should be initialized. The example code uses this to avoid overwriting static variables
on a wake-up from sleep.

Stack: The two ifdefs enclosing _start__stack define a global symbol so that the
debugger knows where the stack starts, and can find the call stack.

• IAR

www.onsemi.com AND9371/D

22 ON Semiconductor Project Wizard

If available, SDCC arranges for a function named __low_level_init to be called before
main. The return value of this function determines whether static variables should be
initialized. The function needs to reside in segment CSTART and its calling
convention is determined by the code model selected. The example code uses this to
avoid overwriting static variables on a wake-up from sleep.

• Keil

Keil does not call any startup routine, its runtime library does not support bypassing
static variable initialization. Therefore, the example code calls it explicitly if the
compiler is Keil.

www.onsemi.com AND9371/D

11. TROUBLESHOOTING GUIDE

11.1. COMPILER AUTO-DETECTION FAILS ON FIRST START

When AxCode::Blocks is run for the first time, it tries to auto-detect the installers. If the
auto-detection fails, configure the compiler (SDCC) manually as shown in the screen shots

below. The path C:\Program Files\ must be replaced by the actual installation path if a non-
default installation has been selected.

Open the compiler settings dialog by clicking on Settings→Compiler. Select SDCC (under
selected compiler). Click on “Set as default”. Click on “Search Directories” and “Compiler”,
and enter the directories as in the picture above.

www.onsemi.com AND9371/D

24 Troubleshooting Guide

Click on “Linker”, and enter the directories as in the picture above.

Click on “Toolchain Executables”, and verify the “Compiler's Installation directory”.

www.onsemi.com AND9371/D

Click on “Additional Paths”, and enter the path as shown above.

11.2. REMOVE ALL SAVED USER SETTINGS

Open an explorer. Type “%APPDATA%” (without double quotes) into the address bar. Type
enter. The directory now displayed should contain a folder (subdirectory) named
“axCodeBlocks”. This is where AxCode::Blocks stores per-user configuration settings. Delete
that subdirectory.

www.onsemi.com AND9371/D

26 Troubleshooting Guide

11.3. SDCC PROJECT DOES NOT COMPILE

First, make sure that AxCode::Blocks finds the compiler executable. Open the compiler
settings window.

Check that SDCC is the default compiler and that the Compiler's Installation directory points
to SDCC's installation location. Normally, this is automatically set up correctly, but if you
manually move the SDCC directory, or re-install it at another location, you must manually
update the location.

www.onsemi.com AND9371/D

Make sure that SDCC finds all required header files. Check that the compiler's default
include paths contain SDCC's own includes, as well as the AX8052 convenience library (such
as libmf) includes.

Check that the linker's default paths contain SDCC's own libraries path, as well as the
AX8052 convenience library (such as libmf) path.

www.onsemi.com AND9371/D

28 Troubleshooting Guide

11.4. IAR PROJECT DOES NOT COMPILE

First, make sure that AxCode::Blocks finds the compiler executable. Open the compiler
settings window. Then select “IAR 8051 Compiler” in the “Selected Compiler” combobox.

Check that the Compiler's Installation directory points to IAR's installation location.
Normally, this is automatically set up correctly, but if you manually move the IAR directory,
or re-install it at another location, or update it to a new version, you must manually update
the location.

www.onsemi.com AND9371/D

Make sure that IAR finds all required header files. Check that the compiler's default include
paths contain IAR's own includes, as well as the AX8052 convenience library (such as libmf)
includes.

www.onsemi.com AND9371/D

30 Troubleshooting Guide

Check that the linker's default paths contain IAR's own libraries path, as well as the AX8052
convenience library (such as libmf) path.

Make sure the correct linker script appears under “Other linker options”; the correct entry is
–f "C:\Programme\IAR Systems\Embedded Workbench 6.5\8051\config\devices_generic\lnk51ew_plain.xcl"

www.onsemi.com AND9371/D

11.5. PROJECT COMPILES, BUT DEBUGGING DOES NOT WORK

First check whether the Axsem Command Line Debugger, AXSDB, works. Start AXSDB (the
installer places a link into the program section of the start menu).

AXSDB should print the serial number of a target after the “Targets:” prompt. The top two
reasons for an empty line after “Targets:” are that no debug adapter is connected to a
working USB port, or that the USB drivers have not been correctly installed.

www.onsemi.com AND9371/D

32 Troubleshooting Guide

To check whether the drivers are correctly installed, open the device manager.

www.onsemi.com AND9371/D

Yellow exclamation marks on “USB Serial Converter A” or “... B” or “Microfoot Debug
Adapter V1.00” indicate that the driver has not been correctly installed. Right-click on the
device with the exclamation mark, and choose Reinstall driver.

The first time a Debug Adapter is installed, Windows may prompt for the installation of a
driver; choose to install a driver now.

www.onsemi.com AND9371/D

34 Troubleshooting Guide

Newer Versions of Windows (starting with XP), if connected to the internet, offer the option
to search Windows Update for a suitable driver. You can choose this option; it is the easiest
option, though may take some time. As an alternative, the installer also puts suitable
drivers into C:\Program Files\Axsem\AXSDB\ftdi. You can choose to install from this
directory and its subdirectories as well.

www.onsemi.com AND9371/D

file:///../C:/Program%20Files/Axsem/AXSDB%5Cftdi

After successfully re-installing the drivers, the device manager should look as follows. After
installing the drivers, you should reboot Windows.

Check that AXSDB now recognizes the target.

www.onsemi.com AND9371/D

36 Troubleshooting Guide

The following error means that the debugger plugin is not correctly configured. See below
for how to correct this error.

Start AxCode::Blocks. Verify that the correct debugger plugin is selected. To do this, open
the compiler settings window.

www.onsemi.com AND9371/D

Check that the debugger plugin named “AXSEM debugger : Default” is selected.

Now check that the correct axsdb binary is configured in the plugin configuration. To do
this, open the debugger settings.

www.onsemi.com AND9371/D

38 Troubleshooting Guide

Select AXSEM debugger – default. Check that the Executable path is correct.

www.onsemi.com AND9371/D

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other
countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage
may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes
no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical”
parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its
patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal
injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent
regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is
not for resale in any manner.

PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada.

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
 Phone: 81-3-5817-1050

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

ON Semiconductor Website: www.onsemi.com

	1. Introduction
	2. Installing AxCode::Blocks
	3. Connecting the Hardware
	4. Creating a New Project
	5. Adding and Editing Files
	6. Compiling the Project
	7. Debugging the Project
	8. Debugging Windows
	8.1. Breakpoints
	8.2. Registers
	8.3. Disassembly
	8.4. Memory dump
	8.5. Watches
	8.6. Pin Emulation
	8.7. Debuglink

	9. Advanced Debugger Configuration
	10. ON Semiconductor Project Wizard
	11. Troubleshooting Guide
	11.1. Compiler Auto-detection fails on first start
	11.2. Remove all saved User Settings
	11.3. SDCC Project does not compile
	11.4. IAR Project does not compile
	11.5. Project compiles, but debugging does not work

