L XILIN

ZedBoard: Zynq-7000

AP SoC Concepts,

Tools. and Techniaues
A Hands-0On Guide to

Effective Embedded System
Design

ZedBoard (v14.1)

& XILINX

ALL PROGRAMMABLE-

Notice of Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx
products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all
faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory
of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials
(including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or
damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the
Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited
Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-
safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx
products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2012 Xilinx
Page 1 Zynq ZedBoard Concepts, Tools, and Techniques 8/22/2012

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

£ XILIN

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. All other

trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date Version Revision

8/20/2012 14.1 First version

© Copyright 2012 Xilinx
Page 2 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XL

Table of Contents

Contents
Chapter 1 INtrOTUCTIONeciiieiecie ettt re e e nreas 4
1.1 ADOUL ThIS GUITE ..eoveeeieceiee ettt 4
11,1 Take @ TeSEDIIVE! ..o s 4
1.1.2 Additional DOCUMENTATION.......cciiiiiieiieie e e 5
113 Training LabSccveiieie e 5
1.2 How Zynq AP SoC and Xilinx software Simplify Embedded Processor Design 5
1.3 What You Need to Set Up Before Startingccccceveevveresieneene e, 7
1.3.1 Software Installation REQUIrEMENTS:ccoueiieiiii e 7
1.3.2 Hardware Requirements for this GUIAEccecveeiieenieiiesie e 8
Chapter 2 Embedded System Design Using the Zynq Processing System 9
2.1 Embedded System CONSIIUCTIONc.ccveiuiiieiieiie e 11
2.1.1 Take a Test Drive! Creating a New Embedded Project With a Zynq
e Lo T 1o T V] (=] 0 OSSP 11
2.1.2 Take a Test Drive! EXporting t0 SDKccocoiiiiiiiiiiinie e 18
2.1.3 Take a Test Drive! Running the “Hello World” Application 21
2.1.4 Additional INfOrmationccoooeiiiiiiiieiie e 24
Chapter 3~ Embedded System Design Using the Zynq Processing System and
Programmable LOGIC.oiuiiieiiiie ettt ettt 25
3.1 Adding soft IP in the PL to interface with the Zyng PS.........c..ccoov i e 25
3.1.1 Take a Test Drive! Check the Functionality of the IP in the PL................. 27
3.1.2 Take a Test Drive! Working with SDKccccooviiiiiieiiie e, 33
Chapter 4 Debugging with SDK and ChipSCOPe Pro.......cccccvvviienieniienieneee e 35
4.1 Take a Test Drive! Debugging with Software, Using SDK...........c.ccccevervennenn, 35
4.2 Take a Test Drive! Debugging Hardware Using ChipScope Software.............. 36
N 0] 01 0 L SRS 40

© Copyright 2012 Xilinx
Page 3 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

£ XILIN

Chapter 1
Introduction

1.1 About this Guide

This document provides an introduction to using the Xilinx® ISE® WebPACK
software to build a Zyng™-7000 All Programmable SoC (AP SoC) design. The
examples target the ZedBoard (http://www.zedboard.org) using ISE Design Suite
14.1. The required software is included with the ZedBoard Kkit.

Note: The Test Drives in this document were created using Windows 7 64-bit operating system.
Other versions of Windows might provide varied results.

The Zyng-7000 family is the world's first All Programmable SoC. This innovative
class of product combines an industry-standard ARM® dual-core Cortex™-A9
MPCore™ processing system with Xilinx 28 nm unified programmable logic
architecture. This processor-centric architecture delivers a complete embedded
processing platform that offers developers ASIC levels of performance and power
consumption, the flexibility of an FPGA, and the ease of programmability of a
microprocessor.

This guide describes the design flow for developing a custom Zyng-7000 AP SoC
based embedded processing system using the Xilinx ISE WebPACK software tools.
It contains the following four chapters:

« Chapter 1, (this chapter) provides a general overview.

« Chapter 2, “Embedded System Design Using the Zynq Processing System” describes the tool
flow for the Zynqg Processing System (PS) to create a simple standalone "Hello World"
application.

« Chapter 3, “Embedded System Design Using the Zynq Processing System and Programmable Logic”
describes how to create a system utilizing both the Zynq PS as well as the Programmable Logic
(PL).

« Chapter 4, “Debugging with SDK and ChipScope Pro” provides debugging debugging techniques
via software (using SDK Debug) and Hardware (using the ChipScope™ software).

« Appendix A, Application Software describes details of the application needed for the example
design used in this guide.

1

The best way to learn a software tool is to use it, so this guide provides
opportunities for you to work with the tools under discussion. Procedures for sample
projects are given in the Test Drive sections, along with an explanation of what is
happening behind the scenes and why you need to do it.

Take a Test Drive!

Test Drives are indicated by the car icon, as shown beside the heading above.

© Copyright 2012 Xilinx
Page 4 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

http://www.zedboard.org/

£ XILINX

OGRAMMABLE

1.1.2 Additional Documentation

For further information, refer to:

e http://www.xilinx.com/support/documentation/zyng-7000.htm

e http://www.zedboard.org

e Xilinx Design Tools: Installation and Licensing Guide (UG798):
http://www.xilinx.com/support/documentation/sw _manuals/xilinx14 1/iil.pdf

e Xilinx Design Tools: Release Notes Guide (UG631):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14 1/irn.pdf

¢ Xilinx® Documentation:
http://www.xilinx.com/support/documentation

e XilinxGlossary:
http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf

e Xilinx Support:_http://www.xilinx.com/support/

1.1.3 Training Labs

Some Test Drives have associated training labs that you can use for further practice
with the given tasks. When applicable, a description of the lab is provided at the end
of the Test Drive.

1.2 How Zyng AP SoC and Xilinx software Simplify Embedded
Processor Design

The Zyng-7000 All Programmable SoC (AP SoC) reduces system complexity by
offering an dual core ARM Cortex-A9 processing system and hard peripherals
coupled with Xilinx series 7 28nm programmable logic all integrated on a single
SoC. It is the first of its kind in the market and has tremendous potential as a tightly
integrated system.

To simplify the design process, Xilinx offers several sets of tools. The ZedBoard kit
includes ISE WebPACK software, and the appropriate device-locked ChipScope Pro
tools. ISE WebPACK includes the “PlanAhead Design and Analysis tools,
Embedded Processing” for the Zyng XC7Z020 AP SoC, as well as a limited version
of the built-in simulator, 1Sim. The embedded processing component of the ISE
WebPACK tools includes Xilinx Platform Studio (XPS) as well as the Software
Development Kit (SDK). The Zyngq PS may be used without anything programmed
in the Programmable Logic (PL). However, in order to use any soft IP in the PL, or
to route PS dedicated peripherals to device pins for the PL, programming of the PL
is required.

© Copyright 2012 Xilinx
Page 5 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/iil.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/irn.pdf
http://www.xilinx.com/support/documentation
http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support/
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm

With this, you have all the Xilinx tools required to work with your ZedBoard. It is a
good idea to get to know the basic tool names, project file names, and acronyms for
these tools. You can find Xilinx software-specific terms in the Xilinx

Glossary: http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

Xilinx ISE WebPACK

ISE® WebPACK™ design software is the free, downloadable, fully featured front-to-
back FPGA design solution for Linux, Windows XP, and Windows 7, supporting the
ZedBoard.

And new in ISE Design Suite 14 — WebPACK now supports embedded processing design
for the Zyngq™-7000 AP SoC..

The ISE WebPACK tools include PlanAhead, Xilinx Platform Studio and the Software
Development Kit, amongst others. A complete description of ISE WebPACK is
available: http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm

PlanAhead Design and Analysis Tools

PlanAhead software provides a central cockpit for design entry in RTL, synthesis
and verification. PlanAhead offers integration with XPS for embedded processor
design (including access to the Xilinx IP catalog), and SDK to complete the
embedded processor software design. Implentation is achieved through integration
with the ISE toolflow. The implementation flow of your design may be centrally
launched from PlanAhead.

e For more information on the embedded design process as it relates to XPS, see the "Design
Process Overview" in the Embedded System Tools Reference Manual (UG111):
http://www.xilinx.com/support/documentation/xilinx14 1/est_rm.pdf

Note: For this early version of the Zynq development tools, direct simulation of the Processing
System is not available.

Xilinx Platform Studio

XPS is the development environment used for designing the hardware
portion of your embedded processor system. Specification of the
microprocessor, peripherals, and the interconnection of these components,
along with their respective detailed configuration, takes place in XPS. You
can run XPS in batch mode or using the GUI, which is demonstrated in this
guide.

© Copyright 2012 Xilinx
Page 6 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=est_rm.pdf

L XILIN

Software Development Kit

The SDK is an integrated development environment, complementary to XPS,
that is used for C/C++ embedded software application creation and
verification. SDK is built on the Eclipse open-source framework. For more
information about the Eclipse development environment, refer

to http://www.eclipse.org.

Other Components of ISE WebPACK
Other components include:

» Hardware IP for the Xilinx embedded processors
« Drivers and libraries for the embedded software development

* GNU compiler and debugger for C/C++ software development targeting the ARM
Cortex-A9 MPCore in the Zyng Processing System

 Documentation

« Sample projects

1.3 What You Need to Set Up Before Starting

Before discussing the tools in depth, it would be a good idea to make sure they are
installed properly and that the environments you set up match those required for the
"Test Drive" sections of this guide.

1.3.1 Software Installation Requirements:

1. Xilinx ISE WebPACK software tools

The PlanAhead design tool, and Embedded software tools (including XPS and SDK) as
well as ISim (limited) are included in the ISE WebPACK design software. Be sure that
the latest version of the software is installed. Apply the Device Pack addition, if it is
available.

2. Xilinx ChipScope Pro Tools

A version of the Xilinx ChipScope Pro tools that supports the ZedBoard is included with
the kit. ChipScope Pro allows you to probe the internal signals of your design much as
you would with a logic analyzer. A license will need to be generated to use the
ChipScope Pro tools.

3. Software Licensing

Xilinx software uses FLEXnet licensing. A license is required for ISE WebPACK. A
WebPACK license does not require a host ID and, therefore, can work on any computer.

© Copyright 2012 Xilinx
Page 7 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

http://www.eclipse.org/

L XILIN

(However, the ChipScope Pro tools do require a Host ID.) To WebPACK license, run the
Xilinx License Configuration Manager (XLCM), which is automatically launched when
the installation program exits. When XLCM starts, it prompts you to register, then
automatically places the WebPACK license in the proper directory.

When the software is first run, it performs a license verification process. If it does
not find a valid license, the license wizard guides you through the process of
obtaining a license and ensuring that the Xilinx tools can use the license.

4. ZedBoard Board Definition file

The ZedBoard Board Definition File takes the form of zedboard_rev#_v#.xml, for
example, zedboard_revC_v1.xml and should be downloaded

from http://www.zedboard.org, under the Documentation link. Copy this xml file
into: <Xilinx ISE 14.1 installation path>/ISE_DS/ISE/data/zyngconfig/board.

1.3.2 Hardware Requirements for this Guide

The ZedBoard is required to complete the tutorial. A second micro-USB cable is
required to connect both the USB-JTAG and USB-UART on-board.

© Copyright 2012 Xilinx
Page 8 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

http://www.zedboard.org/

L XILIN

Chapter 2
Embedded System Design Using the Zynq
Processing System

Now that you've been introduced to the Xilinx® software tools, you'll begin looking
at how to use it to develop an embedded system using the Zynq™ Processing
System (PS).

Zyng AP SoC consists of an ARM Cortex A9 MPCore PS which includes various
dedicated peripherals as well as a configurable PL. This offering can be used in
three ways:

1. The Zynqg PS can be used independently of the PL.

2. Soft IP may be added in the PL and connected to extend the functionality of the PS. You can
use this PS + PL combination to achieve complex and efficient design of a single System On
Chip (S0C).

3. Logic in the PL can be designed to operate independently of the PS. PS or JTAG must be used
to program the PL however.

© Copyright 2012 Xilinx
Page 9 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILINX

ALL

PROGRAMMABLE

The design flow is described in Figure 2-1: Design Flow for Zynq

1. Launch PlanAhead

= 2. Add Embedded Source
3. Configure PS settings (launch XPS) ==t
4. Add P 5. Add Top-Level HDL "~~~ > 9. Specify hardware
(exit XPS, back to 6. Add Constraints file built from PlanAhead
L PlanAhead) 7. Generate Bitstream => and XPS
XPS -bit 10. Add Software
8. Export hardware to SDK Project & Build => _elf

=
PlanAhead ‘g..,!’ | SDK |

11. Program bitstream & .elf into Zynqg

Optional direct next step

ZedBoard

Figure 2-1: Design Flow for Zynq
The design and implementation process begins with launching the PlanAhead tools, which is the

central cockpit from which design entry through bitstream generation is completed.

From PlanAhead, Add an Embedded Source, to include the ARM Cortex A9 Processing System
(PS) in the project. XPS is then automatically launched from PlanAhead. Selection of the PS and
optional addition of PL peripheralsoccur within XPS.

In XPS, configure settings to select the ZedBoard and make the appropriate design decisions such
as selection/de-selection of dedicated PS 1/0 peripherals, memory configurations, clock speeds,
etc.

At this point, you may also optionally add soft IP from the IP catalog or create your own
customized IP. When finished close XPS to return to PlanAhead.

Back in the PlanAhead environment, automatically generate a top-level HDL wrapper for the
processing system.

Ensure that the appropriate PL related design constraints are defined as required. These constraints
would typically be useful to ensure that signals to general purpose 1/O such as the switches, LEDs,
and Push Buttons on the ZedBoard are routed appropriately. This is done via the creation of a .ucf
constraints file in the PlanAhead project.

Generate the bitstream for configuring the logic in the PL if soft peripherals or other HDL are
included in the design, or if hard peripheral 10 was routed through the PL. At this stage, the
hardware has been defined in <system.xml>, and if necessary a bitstream <system.bit> has been
generated. At this point, the bitstream could be programmed into the FPGA,; or it could be done
from within SDK.

© Copyright 2012 Xilinx

Page 10 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

e

8. Now that the hardware portion of the embedded system design has been built, export it to SDK to
create the software design. (A convenient method to ensure that the hardware for this design is
automatically integrated with the software portion is achieved by Exporting the Hardware from
PlanAhead to SDK.)

9. From SDK, add a software project to associate with the hardware design exported from
PlanAhead.

10. Within SDK, for a standalone application (no operating system) create a Board Support Package
(BSP) based on the hardware platform and then develop your user application. Once compiled, a
<designname.elf> is generated.

11. The combination of the optional bitstream and the .elf file together programs the hardware and the
software functionality into the Zynq device on your ZedBoard.

2.1 Embedded System Construction

Creation of a Zynq system design involves configuring the PS to select appropriate
boot devices and peripherals. As long as the selected PS hard peripherals use
Multiplexed 10 (MIQO) connections , and no additional logic or IP is built or routed
through the PL, no bitstream is required. This chapter guides you through creating
one such design, where only the PS is used.

2.1.1 ﬁ Take a Test Drive! Creating a New Embedded Project With
a Zynq Processing System

For this test drive, you start the ISE® PlanAhead™ design and analysis tool and
create a project with an embedded processor system as the top level.

Start the PlanAhead tool.
1. Select Create New Project to open the New Project wizard.

2. Use the information in the table below to make your selections in the wizard screens

Wizard Screen System Property Setting or Command to Use
Project Name Project name Specify the project name.
Project location Specify the directory in which to store

the project files.

Create Project Subdirectory Leave this checked.

Project Type Specify the type of sources for Use the default selection, RTL Project.
your design. You can start with
RTL or a synthesized EDIF

Add Sources Do not make any changes on this screen.

© Copyright 2012 Xilinx
Page 11 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILINX

ALL PROGRAMMABLE

Add Existing IP Do not make any changes on this screen.
Add Constraints Do not make any changes on this screen.
Default Part Specify Select Parts.
Filter Family: Zyng-7000

Sub-Family: Zyng-7000
Package: CLG 484
Temp Grade: C

Speed Grade: -1

Device Select xc7z020clg484-1

New Project Summary | Project summary Review the project summary before
clicking Finish to create the project.

E New Project ﬁ1

Default Part
Choose a default Xiinx part or board for your praject. This can be changed later. {

Specify Filter

i Parts Product Category | Al - Package | CLG434 -
@ Boards Family | Zyng-7000 - | Speed Grade | -1 S
Sub-Family | Zyng-7000 = | Temp Grade | C -

Reset All Filters

Search: | O,

) 10 Fin Available LuT . Blodk Gb PCI
= Count 10Bs Elements FlipFlops RAMs s Transceivers Buse:
@ xcT2010dg484-1 434 100 17600 35200 &0 a0 o} a
$xc7020dg84l |4 [0 [s300 i o |

] I b @l

[< Back][Next >] Finish

Figure 2-2: New Project Wizard Part selection

When you click Finish, the New Project wizard closes and the project you just
created opens in the PlanAhead design tool.

© Copyright 2012 Xilinx
Page 12 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILINX

ALL PROGRAMMABLE

IMPORTANT: The Design Runs module at the bottom of the PlanAhead design tool interface
has a Strategy column. Review this column to verify that the values are the PlanAhead
Defaults (XST 14) and ISE Defaults (ISE 14). If these do not show the correct values, correct
them in the Synthesis Settings and Implementation Settings.

r
E] ZedBoard_CTT_14.1 - [Ci\tutorials\Avnet\ZedBoard\14.1\ZedBoard_CTT_14.1\7edBoard_CTT_14.1.ppr] - PlanAhead 14.1 = | B S
File Edit Flow Tools Window Layout View Help 2ar -
R oo x| D D ¥ K| T G| 3oefaulLayout | K| ® Ready
Flow Mavigator &« Project Manager - ZedBoard CTT_14.1 X
Q, Z {% Sources =0 g % T Project Summary X a9 =
s —I " A0 B = =
4 Project Manager LSBT Call | =a| {5 Project Settings Edit (&) (0 Messages =
{37 Design Sources % .
ﬁ Project Settings -6 Constraints (1) Project Name: ZedBoard_CTT_14.1 Summary: 0 errors
O*j Add Sources Product Family: Zyng-7000 0 critical warnings
j__} IP Catalog Project Part: *c72020dg484-1 0 warnings
@ Run Behavioral Sil Top Module Mame: Mot Defined
=» Synthesis (Ready) 3 =) Implementation (Ready)
4 RTL Analysi 3
> % Open Elaborated Hierarchy | Libraries | Compile Order Part: xc7z020dg484-1 Part: xc7z020clg484-1
& Sources | ¢ Templates Strategy: PlanAhead Defaults Strategy: ISE Defaults
1 v
4 Synthesis Flow: XST Flow: ISE
i - T X%
% Synthesis Setting! IS Ha
=LY Resources
$ Run Synthesis "= &J k
- @ Open Synthesized Resource infarmation is not available.
Implemented Timin B
4 Implementation 6 = =
% Implementation i Timing information is not available. -
4| n F
[» Run Implementati [—— ——1|
—
> [@¥ Open Implement= |[iDesign Runs —Oq %
e C\ Name Part Constraints Strategy Status Progress Start
4 Program and Debu
L S el [SR—— XC72020dg484-1 constrs_1 PlanAhead Defaults (¥5T 14) Not started 0%
& Bistream Settings o | 2 impl_1 xc72020dg984-1 constrs_1 ISE Defaults (ISE 19) Notstarted 0%
ﬁ Generate Bitstrea V\
4 ChipScope Analyz |:]
B vpacT
h »
3
wall €7 [1 =]
P m = |5 Td Console | > Messages | C] Compilation |) Reports, (% Design Runs

Figure 2-3: PlanAhead GUI

You'll now use the Add Sources wizard to create an embedded processor project.

Click Add Sources in the Project Manager.

The Add Sources wizard opens.

1. Select the Add or Create Embedded Sources option and click Next.

2. Inthe Add or Create Embedded Source window, click Create Sub-Design.

3. Type a name for the module and click OK. For this example, use the name system.

The module you created displays in the sources list.

Click Finish.

XPS opens, and asks if you want to add the Processing System?7 to the system.

© Copyright 2012 Xilinx

Page 13

Zynq ZedBoard Concepts, Tools, and Techniques

8/22/2012

& XILINX

ALL PROGRAMMABLE

4. Click Yes.
Note: The 14.1 Base System Builder does not support the Processing System.

The XPS System Assembly View opens with the Zynqg tab displayed.

Click the Bus Interfaces tab. Notice that processing_system7 was added as shown in Figure 2-4.

7% Xilinx Platform Studio =1
@ Fle Edt View Project Hardware Debug Window Help =18 xj
|8 =5 |l €=l £ =

P Catalog +O®x |, 2zyng Businterfaces | Ports | Addresses | &
R EEEREE Name [1Pverson [1P Type |

Description |I' processi... 4.00.a ZL processing_system7
= £ EDK Instal

sayd [A

Bus and Bridge

Clock, Reset and Interrupt
‘Communication High-Speed
‘Communication Low-Speed
DMA and Timer

Debug

FPGA Reconfiguration

General Purpose 10
Interprocessor Communication
Memory and Memory Controller
oCT

B0 -5 59

B E

-

Peripheral Controler
Processor

USER

Utility

Verification

= Video and Image Processing
Project Local PCores

-5

-

B

4 | » | —Legend - —
diMaster @Slave diMaster/Slave B-Target <Initiator ¥ Connected Ulnconnected i Manitar-
Search TP Catalog: | Clear YrProduction (Tilicense (paid) [(TlLicense (eval) ‘Local ikPre Production WyBeta EdDevelopment
o _t Superseded Di
& Project @ IP Catalog | %L Design Summary | @& sSystem Assembly view [J | & Graphical Design view | |
Console 08 x
processing_system7_0 has been added to the project ‘I
UPINFO:EDR:3%01 - please conneci bus inierface, sei up pori and generate address manually
-
4 »

[Z] console [t Warnings [@ Errors|

Figure 2-4: XPS System Assembly View

© Copyright 2012 Xilinx
Page 14 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILINX

ALL PROGRAMMABLE.

Click the Zynq tab in the System Assembly View to open the Zynq Processing System block

inANrAnA

T | Businierfaces | Ports | Aderesses
@ -« - [

Help Import Export Summary

Processing System (PS)
,--—'-'_.-r
VO Peripherals Reset | Application Processor Unit (AFU) ‘
- NEON™/FPU Engine MEOQN™/FPU Engine
Banko
MIO Cortex™-A9 Cortex™-A9
(18:0) System MMU MPCore ™ MMU I MPCore ™
Level CPU cPU
Control S2ZKB | 32KB D 32ZKB | 32KB D 64b
Regs Cache | Cache Cache ___Cache AXI
» GIiC Snoop Control Unit ACP
DMAS Y LD
- 4 ‘ 612 KB L2 Cache & Controller &
= ocm 286 KB OCM
$ A
! ' s
= DAP
» Memoryinterfaces
=

-
DEVE | Programmabla DDR2/3, LPDDR2
Legic to Mamary Centroller
[12[13]24]15]| F 3
DMAI Sync EEE%
LIEY EIED] ENEIEN
=

Extended MIO

DM Config | IRQ High Performance M
(EMIO} Chanels aAES/ AX| 32bfedb Slave
SHA
= Programmable Logic (PL) Sslect
AMBAD Connection Legend
{12.6G Arrow direction shows control, Data flows both directions
bps) Configurable AXI3 32 bit/S4 bit FCle
AXI3 64 bit J AXI3 32 bit / AHB 32 bit / APE 32 bit Genz
T Design Summary L Graphical Design View & Syt Aoty Ve [x]

w08 X

Figure 2-5 : Zynq Processing System

Review the contents of the block diagram. The green colored blocks in the Zyng Processing
System diagram are items that are configurable within the Zynq tab. You can click a green
block to open the coordinating configuration window.

=
5. Click the Import Zynq Configurations button Impert

The Import Zyng Configurations dialog box opens.

6. Select a configuration template file. The template selected by default is the one in the
installation path on your local machine that corresponds to the ZedBoard. To select the
Zedboard configuration template, Click on the “+” sign in the User Template section, and
navigate to ‘zedboard_revC_v1.xml’ in your installation path. This xml file resides in: <Xilinx
ISE 14.1 installation path>/ISE_DS/ISE/data/zyngconfig/board. Select Open to add this
template to the User Template section.

© Copyright 2012 Xilinx
Page 15 Zynq ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILINX

ALL PROGRAMMABLE.

7. Select zedboard_RevC_v1.xml in the User Template section.

ﬁ Import Zyng Processing System E
—

Select Configuration Template
System Template (Configurations available in the installed area) : I
ZC702 Develepment Board Template
1

User Template (Configurations created by User) :

CAXilinx\14 1\ISE_DS\ISE\data\zynqconfighboard\zedboard_RevC vl.xml

Summary of selected Configuration:

Description

Default configuration for ZedBoard Created 05 Jun 2012 See more &t www.zedboard.org

m

Preset Info
Device Size wc7z020
Package dg484
Speed Grade -1

Zynq PS configuration

Peripheral |Status [Signal Group MIO Freqg
ICAND Disabled

ICANT Disabled

EMETO Enabled default MIO 16 ., 27 |1000 MBPS

[[ERP_MDIO |MIC 52.. 53
EMETL | Disabled|| [[

EPIO Enabled | default MIO [i

Figure 2-6: Import Zynq Configurations Dialog Box

8. Click OK.

9. In the confirmation window that opens to verify that the Zynq MIO Configuration and Design
will be updated, click Yes.

10. Note the changes to the Zynq block diagram. The 1/O Peripherals become active.

© Copyright 2012 Xilinx
Page 16 Zynq ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILINX

ALL PROGRAMMABLE.

T | Businterfaces | Ports | Addresses |

© E B
Help Impart Fxpart Summary
Processing System (PS)
ol 1O Peripheral |
eripherals Reset Application Processor Unit (APU}
MNEOM™/FPU Engine NEOQON™{FPU Engine
Bank0
MIO < Cortex™_A9 Cortex™_A9
(16:0) - o MMU MPCore ™ MMU MPCore ™
o At ~ cPU | cPU
Control 32KB I 32KB D 32KB | 32KB D
Regs Cache Cache Cache Cache
| J - =113 Snoop Control Unit
L2 ¥ DMAS
] MUX 2 ; 512 KB L2 Cache & Controller
[("1[=}] —
> ocm 266 KB OCM
Interconne ct S
gt Central ‘
MIO Interconnect | g : *
(53:18) ——— DAP |
. - ~
N -
el DEVC Lr-u-nmmu. g DDR2/3, LPDDR2
S — ogic to Mem ory
-\“
[12]13]14]13 rF s
L Input Cleck DM Al Sync ENENELIEEY
FEPrea [C1EN(ETEA] CAENEIES
Extended MIO DMA config | IRQ High Performance XADC |
(EMIO) Clock Ports Chansls J;ES;‘ AX| 32b/64b Slave
o Programmable Legic (PL) select
AMB AI Conneclion Legend
(12.5G Arrow direction shows control, Data flows both directions
bps) Ceonfigurable AXI3 32 bit/4 bit PCle
AXI3 64 bit / AXI3 32 bit f AHB 32 bit f APE 32 bit Gen2
e Dessin summary & Gracheal Desin View & Syt Assently View (<1

“O8:

Figure 2-7: Updated Zynq Block Diagram

11. In the block diagram, click the green 1/O Peripherals box.

As shown in the figure, many peripherals are now enabled in the Processing System with some
MIO pins assigned to them as per the board layout of the ZedBoard. For example, UART1 is
enabled and UARTO is disabled. This is because UART1 is connected to the USB-UART bridge
chip on this board.

© Copyright 2012 Xilinx

Zynq ZedBoard Concepts, Tools, and Techniques 8/22/2012

Page 17

& XILINX

ALL PROGRAMMABLE.

& Zyng PS MIO Configurations u
Zyng PS Configuration MIO Configuration
Show IfO Standard Options
Peripheral Signal B
HOR F Quad SPIFlash |qspi0_ss_b
NAND Flash <Select> Quad SPIFlash |gspi0_io[0]
Enet0 MIO16 .. 27 Quad SPIFlash |gspi0_io[1]
Enetl <Select> Quad SPI Flash | qspi0_io[2]
UsB0 MIO 28 .. 39 Quad SPIFlash | qspi0_io[3]
i USB1 < Select> Quad SPIFlash | qspi0_sclk
;
’ Quad 5PIFlash |qgspi_fbelk £
;
:
:
:
-
-
;
:
1 | MIO 17 Enet0 td[0] M
: MIO 18 Enet0 ted[1]
MIO 19 Enet0 ted[2]
MIO 20 EnetD td[3]
MIO 21 Enet0 b ctl
MIO 22 Enet0 _clk
MIO 23 EnetD red[0]
MIO 24 Enct0 rd[L]
MIQ 25 Enet0 red[2]
MIQ 26 Enet0 rd[3]
MIO 27 Enet0 e _ctl
MIC 28 USED data[4]
MIO 29 USED dir
MIO 30 USED <tp I8
| cose || Heb

Figure 2-8: Zyng PS MIO Configurations Window

12. Close the Zyng PS MIO Configurations window.

13. Close the XPS window. The active PlanAhead tool session updates with the project settings.

2.1.2

s

Take a Test Drive! Exporting to SDK

In this test drive, you will launch SDK from the PlanAhead tool.

1. Under Design Sources in the Sources pane, select and right-click system (system.xmp) and select

Create Top HDL.

Page 18

© Copyright 2012 Xilinx
Zynq ZedBoard Concepts, Tools, and Techniques

8/22/2012

& XILIN

ALL PROGRAMMABLE

PlanAhead generates the system_stub.v top-level module for the design.

Project Manager - ZedBoard_CTT_14.1

Sources
]
aQ =

i e B B

[l Design Sources (1)

B

[Constraints (1)

Hierarchy IP Sources | Lif
4% Sources |) Templ|

Source Node Properties

« +[EE

] system (system.xmp)
Madule: sy!
Locatian: C:
] m

Hierarchy Update
Refresh Hierarchy

Set Used In...
Create Top HDL

—
% Source Node Properties... Ctrl+E
5 CopyText Ctrl+C
Open File Alt+O
Update File Contents... Alt+U
Alt+]
Remove File from Project... Delete
Alt+Equals
Disable File Alt+Minus

3

In the PlanAhead tool, Select File > Export > Export Hardware.

The Export Hardware dialog box opens. By default, the Export Hardware check box is checked.

4. Click OK; SDK opens.

Page 19

Check the Launch SDK check box.

© Copyright 2012 Xilinx
Zynq ZedBoard Concepts, Tools, and Techniques

8/22/2012

& XILINX

ALL PROGRAMMABLE

Notice that when SDK launches, the hardware description file is automatically read
in to create the system_hw_platform. The system.xml tab shows the address map for
the entire Processing System.

' - Bl
C/C++ - system_hw_platform/system.xml - Xilinx SDK [E=NEER
File Edit Source Refactor Mavigate Search Run Project Xilinx Tools Window Help
il BiER S @-a-dre- B B0 ® P E B (Bg /e
[Project Explorer 52 = O || Iz systemaxml 23 = O[5 out @ Ma =0
i == . - « || An outline is not available.
= system_hw_platform Hardware Platform Specification
3F system_hw_platform
[@ psT_init.c Design Information
s7_init.h
s Eg inithtml Target FPGA Device: xc7z020
pg‘init'td Created With: EDK14.1
= syst_em «ml Created On: Wed May 23 14:31:35 2012 =

XPS Design Report:

filey//C:/ZEDboard/project 5/project 5.5dk/SDK/SDK Export/hw/systerm.htm

Address Map for processor ps7_cortexad_0

ps7_uart 1l Oxe0001000 Oxe0001f£f

ps7_sd 0 Oxe0100000 Oxe0100f££ i
psT_ttc 0 OxfB001000 0xf8001fff
ps7_ethernet 0 Oxe000bB000 Oxe000bEff
ps7_usb 0 Oxe0002000 Oxe0002fff
ps7_qgspi 0 Oxe000d4000 Oxe000df£f
ps7_gspi_linear 0 Oxfc000000 Oxfcffffff
ps7_ddr 0 Ox00100000 Ox1fffffEf
ps7_gpio 0 Oxel00a000 Dxe000afff
ps7_ddrc 0 OxfB8006000 0xf8006££E
psT_dev_cfg 0 OxfB8007000 Oxf8007£f§
ps7_dma_s Oxf8003000 OxfB003££¢
ps7_iop_bus_config 0 Oxe0200000 0x=0200£££
ps7_ram_0 Ox00000000 Ox0002££££
psT_ram_l Oxfff£f0000 Oxfffffdff
ps7_scugic 0 Oxf8£00100 Oxf8£001£F
ps7_scutimer 0 Oxf8£00600 Ox£8£0061f
ps7_scuwdt 0 Oxf8£00620 Oxf3{006££
ps7_sler 0 Oxf 2000000 Oxf2000£££
ps7_dma_ns Oxf8004000 OxfB004£ff

4| i b

Overview | Source

sElEARE @

Figure 2-9: Address Map in SDK system.xml Tab

What Just Happened?

The PlanAhead design tool exported the Hardware Platform Specification for your
design (system.xml in this example) to SDK. In addition to system.xml, there are
four more files relevant to SDK. They are ps7_init.c, ps7_init.h, ps7_init.tcl, and
ps7_init.html. The .tcl file is used by XMD for configuring the PS when using
JTAG.

The system.xml file opens by default when SDK launches. The address map of your
system read from this file is shown by default in the SDK window.

© Copyright 2012 Xilinx

Page 20 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

£ XILINX

OGRAMMABLE

The ps7_init.c and ps7_init.h files contain the initialization code for the Zynq
Processing System and initialization settings for DDR, clocks, plls, and MIOs. SDK
uses these settings when initializing the processing system so that applications can
be run on top of the processing system. There are some settings in the processing
system that are fixed for the ZedBoard.

What's Next?

Now you can start developing the software for your project using SDK. The next
sections help you create a software application for your hardware platform.

2.1.3 h Take a Test Drive! Running the “Hello World” Application
1. Connect thel2V AC/DC converter power cable to the ZedBoard barrel jack.
2. Connect a USB micro cable between the Windows Host machine and the ZedBoard JTAG (J17).

3. Connect a USB micro cable to the USB UART connector (J14) on the ZedBoard with the Windows
Host machine. This is used for USB to serial transfer.

4. Power on the board using the switch indicated in Figure 2-7: ZedBoard Power switch and
Jumper settings.

IMPORTANT: Ensure that jumpers are set as shown in the figure.

© Copyright 2012 Xilinx
Page 21 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILINX

ALL PROGRAMMABLE.

Copuraght 2012

(ML T

PB200-248 REV' B

ZedBoard

wuw. zedboard.org
bise

foone (nio7 B
Los

Figure 2-10: ZedBoard Power switch and Jumper settings

5. Open a serial communication utility for the COM port assigned on your system.

Note: The default configuration for Zynq Processing System is: Baud rate 115200; 8 bit;
Parity: none; Stop: 1 bit; Flow control: none.

To open a serial communication terminal in SDK:

.
Select Window > Show view > Terminal and click 1 in the console view area. Configure it with
the parameters as shown below (replacing COM7 with the appropriate COM port number, verify using
Control Panel > Device Manager).

© Copyright 2012 Xilinx
Page 22 Zynq ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILINX

ALL PROGRAMMABLE.

@ New Terminal Connection (BEE-S

View Settings:

View Title: Terminal 1

Connection Type:

Serial > '
Settings:

Port: COM7 -

Baud Rate: 115200 =

Data Bits: 8 v

Stop Bits: il >
Panity: iNune -

Flow Control: INone -
Timeout (sec): 5

OK Cancel

=

6. Select File > New > Xilinx C Project.

7. Select Hello World in the template list and keep the remaining default options. The location
of your project, hardware platform used, and processor are visible in this window. For now
the processor used is ps7_cortexa9_0.

8. Click Next.

9. On the next page, the BSP for this project is selected. Click Finish to generate the BSP for
the Hello World application. Wait for the process to complete; when you see the
‘hello_world_0’ project with its 4 sub-directories: Binaries, Includes, Debug and src, it is
complete.

10. The Hello World application and its BSP are both compiled and the .elf file is generated.
11. Right-click hello_world_0 and select Run as > Run Configurations.
12. Right-click Xilinx C/C++ ELF and click New.

© Copyright 2012 Xilinx
Page 23 Zynq ZedBoard Concepts, Tools, and Techniques 8/22/2012

£ XILIN

13. The new run configuration is created named hello_world_0 Debug.

14. The configurations associated with the application are pre-populated in the Main tab of the
launch configurations.

15. Click the Device Initialization tab in the launch configurations and check the settings here.

16. Notice that there is a configuration path to the initialization TCL file. The path of
ps7_init.tcl is mentioned here. This is the file that was generated when you imported your
design into SDK; it contains the initialization information for the processing system when
using JTAG.

17. The STDIO Connection tab is available in the launch configurations settings. You can use
this to have your STDIO connected to the console. We will not use this how because we
have already launched a serial communication utility. There are more options in launch
configurations but we will focus on them later.

18. Click Run.
19. "Hello World" appears on the serial communication utility.
20. Close SDK.

Note: There was no bitstream download required for the above software application to be executed
on the ZedBoard. The ARM Cortex A9 dual core is already present on the board. Basic initialization
of this system to run a simple application is done by the device initialization TCL script.

2.1.4 Additional Information

Board Support Package

The BSP is the support code for a given hardware platform or board that helps in
basic initialization at power up and helps software applications to be run on top of it.
It can be specific to some operating systems with bootloader and device drivers.

Standalone Application

Standalone applications do not utilize an Operating System (OS). They are
sometimes also referred to as bare-metal applications. Standalone applications have
access to basic processor features such as caches, interrupts, and exceptions, as well
as the basic processor features. These basic features include standard input/output,
profiling, abort, and exit. It is a single threaded semi-hosted environment.

The application you ran in this chapter was created on top of a standalone BSP.

© Copyright 2012 Xilinx
Page 24 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

L XILIN

Chapter 3
Embedded System Design Using the Zynqg
Processing System and Programmable
Logic

One of the unique features of using the Zynqg™ AP SoC as an embedded design
platform is in using the Zynq PS for its ARM Cortex A9 MPCore processing system
as well as the available PL.

In this chapter we will be creating a design with:

» PL-based AXI GPIO and AXI Timer with interrupt from PL to PS section
e ChipScope™ IP instantiated in the PL

e Zyng PS GPIO pin connected through the PL pins routed via the Extended MIO (EMIO)
interface

The flow of this chapter is similar to that in Chapter 2. If you have skipped that
chapter, you might want to look at it because we will refer to it many times in this
chapter.

3.1 Adding soft IP in the PL to interface with the Zynq PS

Complex soft peripherals can be added into the PL to be tightly coupled with the
Zynq PS. This section covers a simple example with AXI GPIO, AXI Timer with
interrupt, PS section GPIO pin connected to PL side pin via EMIO interface, and
ChipScope instantiation for verification.

In this section, you’ll create a design to check the functionality of the AXI GPIO,
AXI Timer with interrupt instantiated in PL, and PS section GPIO with EMIO
interface. The block diagram for the system is as shown in Figure 3-1: Block Diagram.

© Copyright 2012 Xilinx
Page 25 Zynq ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILINX

ALL PROGRAMMABLE

PS Section

Application Processor Unit

UART
Central
Interconnect
LED
LD9

: >| Global Interrupt Controller

CLOCK
EMIO Generation

32b GP AXI Master Port

Interface

AXI INTERCONNECT

Interrupt

AXIGPIO

AXI Timer

Chipscope
AXI Monitor

PL Section

BTNR BTNU
Figure 3-1: Block Diagram

This system covers the following connections:

e The PL-side AXI GPIO has only 1 bit channel width and it is connected to the push-button switch
'BTNU' on the ZedBoard.

e The PS section GPIO also has a 1 bit interface routed to PL pin via EMIO interface and
connected to the push-button switch 'BTNR' on the board.

e Inthe PS section another 1 bit GPIO is connected to the LED 'LD9' on board which is on
the MI10O.

e An AXI timer interrupt is connected from PL to PS section interrupt controller. The timer
starts when the user presses any of the selected push buttons on board and toggles the LED
‘LD9' on board

You will write application software, which takes input from the user to select the
push button switch on the board and waits for the user to press that particular push
button. When the push button is pressed, the timer starts automatically, switches
OFF the LED and waits for the timer interrupt to happen. After the Timer Interrupt,
the LED switches ON and execution starts again, and it waits for a valid selection
from the user.

© Copyright 2012 Xilinx
Page 26 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

£ XILIN

You will add the ChipScope Integrated Controller (ICON) and AXI Monitor IPs to
the design so that in a later section you can learn how to debug hardware using the
AXI monitor.

The sections of Chapter 2 are valid for this design flow also. You’ll use the system
created in that chapter and pick up the procedure following 2.1.1 Take a Test
Drive! Creating a New Embedded Project With a Zynqg Processing System.

g1q S

PL

In this test drive, you’ll check the functionality of the AXI GPI1O, AXI Timer with
interrupt instantiated in PL and EMIO interface.

Take a Test Drive! Check the Functionality of the IP in the

1. Inthe PlanAhead tool Sources pane, invoke XPS by double-clicking system_i-
system(system.xmp).

This is the embedded source you created in Take a Test Drive! Creating a New Embedded Project
With a Zynq Processing System, page 10.

2. Inthe XPS System Assembly View, click the Bus Interfaces tab.

3. From the IP catalog, expand General Purpose 10 and double-click AXI General Purpose
10 to add it.

A message appears asking if you want to add the axi_gpio 1.01.b IP instance to your design.
4. Click Yes.
The configuration window for GPIO opens.

5. Expand Channel 1 to view configuration parameters for channel 1.

6. Notice GP1O Data Channel Width with value 32. Change it to 1 as your design needs only
one bit of input to work. Leave all other parameters as they are.

7. Click OK.

A message window opens with the message "axi_gpio IP with version number 1.01.b is
instantiated with name axi_gpio_0". It will ask you to determine to which processor to connect.
Remember you are designing with a dual core ARM processor. The message also says XPS will
make the Bus Interface Connection, assign the address, and make 10 ports external.

The default choice of processor is "processing_system7_0". Do not change this.
8. Click OK.
There are a few connections that are not done automatically and must be done manually.

NOTE: The AXI interconnect automatically gets instantiated between the PL IPs and the PS
Section Interconnect. In this example, AXI GPIO is connected to PS through AXI interconnect.

9. Inthe IP Catalog, expand DMA and Timer and double-click the AXI Timer/Counter IP to
add it.

© Copyright 2012 Xilinx
Page 27 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILIN

ALL PROGRAMMABLE

A dialog box appears asking if you want to add the axi_timer_1.03.a IP instance to your design.

10. Click Yes.

The configuration window for TIMER opens. Leave all other parameters as they are.

11. Click OK.

A message window opens with the message "axi_timer IP with version number 1.03.a is
instantiated with name axi_timer_0." It will ask you to determine to which processor to connect.
Remember you are designing with a dual core ARM processor. The message also says XPS will
make the Bus Interface Connection, assign the address, and make 10 ports external.

The default choice of processor is "processing_system7_0". Do not change this.

12. Click OK.

You’ll connect the AXI timer Interrupt to the PS section interrupt manually later in this section.

13. In the IP Catalog, expand Debug and add two IPs to the design: ChipScope AXI Monitor
and ChipScope Integrated Controller. Do not make changes to the configuration of either

IP.

14. Click the Ports tab, which lists the IPs and their ports. Expand axi_interconnect_1,
axi_gpio_0, axi_timer_0, chipscope_axi_monitor_0, and chipscope_icon_0.

15. Review the following IP connections. If any of these aren’t already connected, connect

them now

IP

Port

Connection

axi_interconnect_1

INTERCONNECT_ACLK

Processing_ps7_0 : FCLK_CLKO

INTERCONNECT_ARESE
TN

Processing_ps7_0::FCLK_RESETO_N

axi_gpio_0 (BUS_IF) Processing_ps7_0: FCLK_CLKO
S_AXI:S_AXI_ACLK
(10_IF) gpio_0::GPIO_IO External Port ::axi_gpio_0_GPIO_IO_pin
axi_timer_0 (BUS_IF) Processing_ps7_0 : FCLK_CLKO

S_AXI_::S_AXI_ACLK

Chipscope_axi_monitor
0

CHIPSCOPE_ICON_CON
TROL

Chipscope_icon_0 ::control0

(BUS_IF) MON_AXI::
MON_AXI_ACLK

Processing_ps7_0: FCLK_CLKO

Chipscope_icon_0

Control0

Chipscope_axi_monitor0::CHIPSCOPE _|I
CON_CONTROL

Page 28

© Copyright 2012 Xilinx
Zynq ZedBoard Concepts, Tools, and Techniques

8/22/2012

& XILINX

ALL PROGRAMMABLE

VY niir Parte tah chniilld ha cimilar tn Finiirea 22 Camnleatad Part Cannartinneg

'| Zyng | Bus Interfaces ‘ Ports | Addresses

£p

b

Name Connected Port Direction Range Class Frequency(Hz) Reset Polarity Sensitivity
External Ports
[T axLinterconnect 1
INTERCONNECT_ACLK processing_system?_0:FCLE_CLKD 71 CLE
INTERCONMNECT ARESETM processing system? 0:zFCLK RESETO N 71 RST
[H-processing system? 0
[=1- axi_gpio 0
=} (BUSIF) 5_AXI Connected to BUS axi_interconnect 1 E
S AKT_ACLE processing_system/_(:FCLE_CLKD Jf 1 CLK
=+ (I0_IF) gpic_0 Connected to External Ports E
GPIO IO External Portst:axi_gpic_0_GPIO_IO_pin J{ 10
GPI010.1 71
GPIOI0.0 fo
GRIOIOT f0
T ox_tumer 0
CaptureTrigd 21
CaptureTrigl 71
GenerateQut) fo
GenerateOutl J{ 0
PWMO Jo
Interrupt processing_system]_0:IRQ_F2P J{ 0 INTERRUPT LEVEL_HIGH
Freeze 1
= (BUSIF) 5_AXI Connected to BUS axi_interconnect 1 E
n S AKT_ACLE processin%systemT_U::FCLK_CLKU J_f_ 1 CLK
[=- chipscape_axt maonttor_(
CHIPSCOPE_ICON_CONTROL chipscope_icon_J:controll J_f_l [35:0]
RESET 21
MON_AX_TRIG_QUT fo
(BUS_IF) MON_AXT Connected to BUS axi_interconnect 1 [=
(- chipscope_icon_0
controll chipscope_axi_monitor_ﬂ::CHIPSCOPE_IC‘}N_.._& 0 [35:0]

Figure 3-2: Completed Port Connections

16. Collapse all IPs and expand processing_system7_0. If the following port connection is not
made, do it now. It should look like Figure 3-3: Ports Tab with processing_system7_0
expanded and M_AXI_GPO_ACLK connected

IP Port Connection

(BUS_IF) M_AXI_GPO::

Processing_system7_0 M_AXI_GPO_ACLK

processing_system7_0 :: FCLK_CLKO

© Copyright 2012 Xilinx

Page 29 Zyng ZedBoard Concepts, Tools, and Techniques

8/22/2012

& XILINX

ALL PROGRAMMABLE

Name Connected Port Direction Range Cass [Frequency(riz) [=]
= processing_system7_0
M_AXI GPO_ARESETN fo RST
© FCLK_CLK3 o CLK
FCLK_CLK2 Lo CLK
FCLK_CLK1 L0 CLK
b processing_system7_0::[M_AXI_GPO0]::M_AXI_GP.#
T axi_gpio_0::[S_AXT]::S_AXI_ACLK o o
PR axi_interconnect_1::[S_AXI_CTRL]::INTERCONNE... = "
axi_tmer 0::[S_AXI]::S_AXI ACLK
FCLK_CLKTRIG3_N 1
FCLK_CLKTRIG2_N L1
~ FCLK_CLKTRIGL_N L1
FCLK_CLKTRIGO_N L1
FCLK_RESET3_N 0 RST
. FCLK_RESET2_N Lo RST
- FCLK_RESET1_N 0 RST
FCLK_RESETO_N axi_interconnect_1::INTERCONNECT_ARESETN # O RST
RQ_F2P L to H: No Connection |1 INTERRUPT
- Core0_nFIQ I INTERRUPT
Core0_nIRQ 1 INTERRUPT
Corel_nFIQ 1 INTERRUPT
- Corel_nIRQ 1 INTERRUPT
IRQ_P2F_QSPI fo INTERRUPT
IRQ_P2F_GPIO Lo INTERRUPT
- IRQ_P2F_USBO Lo INTERRUPT
IRQ_P2F_ENETO fo INTERRUPT
IRQ_P2F_ENET_WAKEQ Lo INTERRUPT
~IRQ_P2F SDIO0 £0 INTERRUPT
IRQ_P2F_12C0 Lo INTERRUPT =
IRQ_P2F_CANO o INTERRUPT
. -IRQ P2F UART1L Zo INTERRUPT
= (BUS_IF) M_AXI_GPO Connected to BUS axi_interconnect_1 j
M_AXT_GPO_ACLK processing_system?7_0::FCLK_CLKO L1 CLK
@ (I0_IF) MEMORY_O Connected to External Ports -
; | (I0_IF) PS_REQUIRED_EXTERNAL... Connected to External Ports ZI | B
4 »

Figure 3-3: Ports Tab with processing_system7_0 expanded and M_AXI_GPO_ACLK connected

17. Connect the Timer interrupt on the PL side to the PS side interrupt controller by doing the
following:

a. Inthe Connected Port column of Processing_System7_0 for IRQ_F2P, click L to
H: No Connection.

The Interrupt Connection dialog box opens as shown in Figure 3-4.

/% Interrupt Connection Dialog

Interrupt Controller|prucessing_s',rstem?_0 :] [~ Show Net Name
Unconnected Interrupt(s) Connected Interrupt(s)

Instance Name | Port Name Instance Name | Port Name |

|_timer_0 | Interrupt

krd Ppey

oK | Cancel I Help |

Figure 3-4: Interrupt Connection Dialog Box

b. Inthe Unconnected Interrupts list, select axi_timer_0 and click the right arrow
button to move it to the Connected Interrupts list.

© Copyright 2012 Xilinx
Page 30 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

Figure 3-5: Interrupt Connection Dialog Box with Connected Interrupt displays the
axi_timer_0 interrupt instance connected with Interrupt ID 91.

/% Interrupt Connection Dialog [x|
Interrupt Cnnh'ollerlpmcessing_system?_t} = [~ Show Net Name
Unconnected Interrupt(s) Connected Interrupt(s)

Insiance iName i Port iame i Instance Name i Port Name i

ilaxi_t'mer_o Interrupt

1
kad ey

oK Cancel | Help |

Figure 3-5: Interrupt Connection Dialog Box with Connected Interrupt

c. Click OK.

XPS connects the timer interrupt on the PL side to the PS section interrupt controller.

LR RLOLT o v nat

FCLK_RESET2_N Zo RST
FCLK_RESET1_N 0 RST
FCLK_RESETO_N axi_interconnect_1::INTERCONNECT_ARESETN # © RST

L to H: axi_timer_0_Interrupt
Cored_nFig i INTERRUPT
Core0_nIRQ 1 INTERRUPT
Corel_nFIQ 1 INTERRUPT

Faral nI0DA «= wmrcobuoT

Figure 3-6: Timer Interrupt Connected on the PL Side

18. Click the Bus Interfaces tab and expand chipscope_axi_monitor_0.

19. In the Bus Name column, click No Connection. Using the drop-down list that appears,
connect chipscope_axi_monitor to axi_gpio_0.S_AXI.

By making this connection, you can monitor any type of AXI-related transactions on the
axi_gpio_0 slave AXI bus using ChipScope Analyzer.

Hame [verson | Bus Name [1P ype
m_'.;.n’ ntercomnect_ 1.06.a ,,_:;;I ntercor
i processing systen?_ o 4.00.8 - prOCessing

axigpi o 1.01.b a axl_gpo
H oy fener_ 0 1.03.a e,]ty
= ciwpscope_axi montor_0 ER] i chipscope i

chyscope_eon_ o0 1.06.a A chipscope_|

Figure 3-7: Connected chipscope_axi_monitor

20. Route the PS section GPIO to the PL side pad using the EMIO interface by doing the
following:

d. Inthe XPS System Assembly View, click the Zynq tab.
e. Click the green 32b GP AXI Master Ports button to open the XPS Core Config
dialog box.

© Copyright 2012 Xilinx
Page 31 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

f. In the User tab, expand the General item.
g. Click to select the Enable GP1O on EMIO Interface check box.

If you cannot see the check boxes for the items in the XPS Core Config dialog box, click and
drag the right side of the window to expand it.

The Width of GP1O on EMIO interface setting is enabled on the next row. The
default setting is 64.

h. Change the GPIO width to 1 and click OK.

i. In the System Assembly View, click the Ports tab and expand
processing_system7_0. You can see that the GPIO port is not connected to an
external port.

g rel _unnaa ARV N ILRRUT T

E- (BUS_IF) M_AXI_GPO Connected to BUS axi_interconnect_1 j
M_AXI_GPO_ACLK processing_system7_0::FCLK_CLKO L1 CLK

(10_IF) GPIO_0 Not connected to External Ports bt

1 (I0_IF) MEMORY_O Connected to External Ports A

- (I0_IF) PS_REQUIRED EXTERNAL.. Connected to External Ports L{

w T TENTTE N MAt ~annartad tn Evtarnal Darte -

Figure 3-8: GPIO Port Not Connected to External Ports

21. Click the drop-down arrow in the Connected Port column and select Make Ports
External.

Making this connection allows you to assign the PL section pin location to PS GPIO in the user
constraint file (UCF) later in this chapter.

22. Run Project > Design Rule Check. Review the messages in the Warnings tab.

23. Close XPS. The PlanAhead™ design tool window becomes active again.

24. In Design Sources, click on your embedded source and then right-click it and select Create
Top HDL. The PlanAhead tool generates the system_stub.v file.

25. In the Project Manager list of the Flow Navigator, click Add Sources.
26. In the dialog box that opens, select Add or Create Constraints, then click Next.

27. Click Create File. In the Create Constraints File dialog box that opens, name the file
system and click OK.

28. Click Finish.

29. Expand the Constraints folder in the Sources window. Notice that the blank file system.ucf
was added inside constrs_1.Double-click system.ucf to open it in the editor.

© Copyright 2012 Xilinx
Page 32 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

£ XILIN

Sources - 0O o %

QT8 e RE

=&~ Design Sources (1)}
(= 4% module_1_stub [m:
¥ module_1_i - module_1
- Constraints
(ki constrs_L

& system.ucf (target

Hierarchy‘ IP Sources | Libraries | Complle Order |
i 4 Sources Templates |

Figure 3-10: system.ucf File Added

30. Type the following text in the UCF file:

Connect to Push Button "BTNU"

NET axi_gpio_0_GPIO_lO_pin IOSTANDARD=LVCMOS25 | LOC=T18;
Connect to Push Button "BTNR"

NET processing_system7_0_GPIO_pin IOSTANDARD=LVCMOS25 | LOC=R18;
The following settings are made:

e The LOC constraint for NET “axi_gpio_0_IO_pin” connects the AXI GPIO pin to the
T18 pin of the PL section and physically connects it to the BTNU push button on the
board.

e The LOC constraint for NET “processing_system7_0 GPIO pin” connects the PS
section GPIO to the FR18 pin of the PL section and physically connects it to the BTNR
push button on the board.

e The IOSTANDARD=LVCMOS25 constraint sets both pins to LVCMOS 2.5V 1/O
standard.

31. Save the UCF.

32. In the Program and Debug list in the Flow Navigator, click Generate Bitstream. Ignore
any critical warnings that appear.

33. After the Bitstream generation completes, export the hardware and Launch SDK as
described in Chapter 2. For this design, since there is a bitstream generated for the PL, this
will also be exported to SDK.

3.1.2 h Take a Test Drive! Working with SDK
SDK launches with the "Hello World" project you created with the Standalone PS in Chapter 2.

© Copyright 2012 Xilinx
Page 33 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

£ XILIN

OGRAMMABLE

1. Select Project > Clean to clean and build the project again.

2. Open the helloworld.c file and modify the application software code. Refer to Appendix A,
Application Software for the application software details.

3. Connect and power-on the board.
4. Open the serial communication utility with baud rate set to 115200.

5. Because you have a bitstream for the PL, you must download the bitstream. To do this, select
Xilinx Tools > Program FPGA. The Program FPGA dialog box, shown below, opens. It
displays the bitstream exported from PlanAhead.

Program FPGA

Program FPGA
Specify the bitstrearn and the ELF files that reside in BRAM memaory

Hardware Specification: C\ZEDbeoard\project_S\project_5.sdk\SDK\SDK_Export\system_hw_platform'\system.xml
Bitstrearn: = CA\ZEDboard\project_S\project_5.sdi\SDKNSDE_Export\systemn_hw_platformbsystem.bit | | Browse..

|l BMM File: Browse..

Processor ELF File te Initialize in Block RAM

'/?' [Program l l Cancel

Figure 3-11: Program FPGA Dialog Box

6. Click Program to download the bitstream and program the PL. The Blue DONE LED (LD12)
will light up.

7. Run the application similar to the steps in Take a Test Drive! Running the “Hello World”
Application.

8. In the system, the AXI GPIO pin is connected to push button BTNU on the board, and the PS
section GPIO pin is connected to push button BTNR on the board via an EMIO interface.

9. Follow the instructions printed on the serial terminal to run the application.

© Copyright 2012 Xilinx
Page 34 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

£ XILIN

Chapter 4 Debugging with SDK and
ChipScope Pro

This chapter describes two types of debug possibilities with the design flow you’ve
already been working with. The first option is debugging with software using SDK.
The second option is hardware debug supported by the ChipScope™ software.

4.1 m Take a Test Drive! Debugging with Software, Using
SDK

First you will try debugging with software using SDK.

1. Inthe C/C++ Perspective, right-click on the Hello_world_0 Project and select Debug As >
Debug Configurations. Check that settings are correct for your debug operation.

2. Click Debug.
3. Adialog box appears with a question about the reset properties of your system.
4. Click OK.

Another dialog box appears to notify you that this kind of launch is configured to open the
Debug perspective when it suspends.

5. Click Yes. The Debug Perspective opens.
Debug - hello_world_0/src/helloweorld.c - Xilink SDE

. cl——

File Edit Source Refactor MNavigate Search Run Project Xilinx Toels Window

ar

wil | o 2 & B0 B
%5 Debug i1 O] o T |i'=€>_ﬁ?v=ﬁ

$ hello_world_0 Debug (1) [Xilinx C/C++ ELF]
XMD Target Debug Agent (5/29/12 2:47 PM] (Suspended)
g#® Thread [1] (Suspended: Breakpoint hit.)
= 1 main{} helloweorld.c140 000100608
g arm-xilinx-eabi-gdb (5/29/12 2:47 PM)
g CAZEDboard\project_S\project_5.sdk\SDKNSDK_Exportihello_world_0\Debug'hellc

F 1] k

Figure 4-1: Debug Perspective Suspended

© Copyright 2012 Xilinx
Page 35 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

£ XILINX

OGRAMMABLE

The processor is currently sitting at the beginning of main() with program execution suspended
at line 0x00100608. You can confirm this information with the Disassembly view, which shows
the assembly-level program execution also suspended at 0x00100608.

Note: If the disassembly view is not visible, select Window > Show view > Disassembly.

The helloworld.c window also shows execution suspended at the first executable line of C code.
Select the Registers view to confirm that the program counter, pc register, contains
0x00100608.

Note: If the Registers window is not visible, select Window > Show View > Registers.

6. Double-click in the margin of the helloworld.c window next to the line of code that reads
init_platform (). This sets a breakpoint at init_platform (). To confirm the breakpoint,
review the Breakpoints window.

If the Breakpoints window is not visible, select Window > Show View > Breakpoints.
7. Select Run > Resume to resume running the program to the breakpoint.

Program execution stops at the line of code that includes init_platform (). The Disassembly and
Debug windows both show program execution stopped at 0x00100630.

8. Select Run > Step Into to step into the init_platform () routine.
Program execution suspends at location 0x00100C44. The call stack is now two levels deep.
9. Select Run > Resume again to run the program to conclusion.

When the program completes running, the Debug window shows that the program is suspended in a
routine called exit. This happens when you are running under control of the debugger.

10. Re-run your code several times. Experiment with single-stepping, examining memory,
changing breakpoints, modifying code, and adding print statements. Try adding and moving
views.

11. Close SDK.

4.2 ﬁ Take a Test Drive! Debugging Hardware Using
ChipScope Software

Next you will try debugging hardware using the ChipScope software using the same
application you created in 3.1.2 Take a Test Drive! Working with SDK.

Run the application.
1. Close SDK.
2. Open ChipScope Pro™ Analyzer.

3. Make sure the on-board JTAG hardware is connected to the USB port of your computer using
USB cable provided.

4. Click the Open/Search JTAG Cable button = .

© Copyright 2012 Xilinx
Page 36 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILINX

5. Click OK.

6. Import a *.cdc file in ChipScope and do the following:
a. Select Dev 1 Mydevicel(XC72020).
b. Select File > Import.

c. Click Select New File and select the chipscope_axi_monitor_0.cdc file from
<project_path>\<project_name>.srcs\sources_1\edk\system\implementation\chipscope_axi_
monitor_0_wrapper.

d. Click OK.
7. Setatrigger at the “ARVALID” signal by doing the following.
a. Expand the Trigger Setup window.

b. Double-click M1:MON_AXI_ARADDRCONTROL. For the
M1:MON_AXI_ARADDRCONTROL unit, change the value of
axi_gpio_0.S_AXI/MON_AXI_AVALID from the default of X to 1. With this setting, any
positive transaction on this signal triggers the waveform.

8 Trigger Setup - DEV:1 MyDevice1 (XC7Z020) UNIT:) MylLAD (LA} oo ®

Funciion Value | Radin

T 4

Trigger

Deplh | 1024 »

BIMdED 4| BuL4l |
- ¢

-]

]

2

Storage Qualiication All Data

Figure 4-2: Trigger Setup Window, MON_AXI_AVALID Setting

c. Inthe Trig section of the Trigger Setup window, click MO in the Trigger Condition
Equation column.

The Trigger Condition dialog box opens.

d. Inthe Enable column, unselect MO and select M1.

© Copyright 2012 Xilinx
Page 37 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILINX

ALL PROGRAMMABLE.

The trigger channel changes from MO to M1; the ARVALID signal is on the M1 channel.

Trgger Condition: TrogerConditiond ﬂ

| Boolean I Sequencer |

® AND Equation) OR Equation (] Negate Whole Equation
Match Unit Enable Megate
M0 L] [] =
M1 vl []
M2 = L
M3 = L]
M4 []
M5 [-
MG o B
M7 Ol []
M8 O L]
. M9 CJ LJ 1>
Trigger Condifion Equation
M1
|
| oK | | Cancel

Figure 4-3: Trigger Condition Dialog Box
Click OK.
8. In the Capture section of the Trigger Setup window, change the Position setting from 0 to 512.

The Trigger Point moves to the middle of the waveform as the sample depth changes to 1024.

9. Click the Run button
ChipScope Analyzer waits for the trigger event.

10. Follow the instructions on the serial terminal to select the NORMAL AXI GPIO use case. This
triggers the waveform.

© Copyright 2012 Xilinx
Page 38 Zynq ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILINX

ALL PROGRAMMABLE.

8 Voo 001 wpecet e wiamenonn T R
et | SR S T T e T A I S
axigpio 0....| 0 ¢ [NENEEEEEENEENNENENENERNNNNNNEEEER=
asgpo | 0 o] LA 10
axi gpio 0.... of of |
atgpio 0. | 0 0
axi_gpin 0.... o o I
axi_gpio 0.... o o
axi_gpic 0.... 1 1
axigpio 0. | 0] 0 10 0 A LA RNNT | 1 A
axigpio 0. | 0 0 L ey
asgpaf...| o o
axi_gpio 0.... o o r
& axi_gpio 0.... 122042201 42500000 XXX A HEKANXNAKAAAD
¢ axi gpio 0.... 1 1 1)
ez gpio 0.... [4220{4260 42600000 BHOS OO CECAERREE R RREREATRORSERESRORORERERARIACRPEPA AN
caxigpiod....| i 1 1)
oazigpio 0....| o o i)
*axi_gpio 0.... 5008{0000] 00003000)
oaxi gpio ... | o o i)
o axi_gpto 0.... [o0on{oeno 0000050)
> axi gpio 0., [B P)<

Figure 4-4: Waveforms

© Copyright 2012 Xilinx
Page 39 Zynq ZedBoard Concepts, Tools, and Techniques 8/22/2012

L XILIN

Appendix A

Application Software

A.1 About the Application Software

The system you designed in this guide requires application software for the
execution on the board. This appendix describes the details about the application
software.

The main() function in the application software is the entry point for the execution.
This function includes initialization and the required settings for all peripherals
connected in the system. It also has a selection procedure for the execution of the
different use cases, such as AXI GPIO and PS GPIO using EMIO interface. You can
select different use cases by following the instruction on the serial terminal.

A.2 Application Software Steps

Application Software comprises the following steps:

Initialize the AXI GPIO module.

1. Set adirection control for the AXI GPIO pin as an input pin, which is connected with BTNU
push button on the board. The location is fixed via LOC constraint in the user constraint file
(UCF) during system creation.

2. Initialize the AXI TIMER module with device ID 0.
3. Associate a timer callback function with AXI timer ISR.

4. This function is called every time the timer interrupt happens. This callback switches on the
LED ‘LD9’ on the board and sets the interrupt flag.

5. The main() function uses the interrupt flag to halt execution, wait for timer interrupt to happen,
and then restarts the execution.

6. Set the reset value of the timer, which is loaded to the timer during reset and timer starts.
7. Set timer options such as Interrupt mode and Auto Reload mode.
8. Initialize the PS section GPIO.

© Copyright 2012 Xilinx
Page 40 Zynq ZedBoard Concepts, Tools, and Techniques 8/22/2012

£ XILIN

9.

10.

11.

12.

OGRAMMABLE

Set the PS section GP10O, channel 0, pin number 10 to the output pin, which is mapped to the
MIO pin and physically connected to the LED ‘LD9’ on the board.

Set PS Section GPI1O channel number 2 pin number 0 to input pin, which is mapped to PL side
pin via the EMIO interface and physically connected to the BTNR push button switch.

Initialize Snoop control unit Global Interrupt controller. Also, register Timer interrupt routine
to interrupt 1D '91', register the exceptional handler, and enable the interrupt.

Execute a sequence in the loop to select between AXI GPI1O or PS GPIO use case via serial
terminal.

The software accepts your selection from the serial terminal and executes the procedure
accordingly.

After the selection of the use case via the serial terminal, you must press a push button on the
board as per the instruction on terminal. This action switches off the LED ‘LD9’, starts the
timer, and tells the function to wait for the Timer interrupt to happen. After the Timer interrupt
happens, LED 'LD9" switches ON and restarts execution.

For more details about the API related to device drivers, refer to the Zyng-7000 Software
Developers Guide (UG821). Zyng-7000 Software Developers Guide (UG821):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14 1/ug821-zyng-7000-swdev.pdf

A.3 Application Software Code

Below is the Application software for the system:

N
*

ook ok % o ok X % ok ok X % ok % X

Copyright (c) 2009 Xilinx, Inc. All rights reserved.

Xilinx, Inc.

XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS™ AS A
COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR
STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION
IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE
FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.
XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO
THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO
ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION 1S FREE
FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

*
N

/*

*

helloworld.c: simple test application

*/
#include <stdio.h>
#include "platform._h"
#include "xil_types.h"
#include "xgpio.h"
#include "xtmrctr._h"
#include "'xparameters.h"
#include "xgpiops.h"
#include "xil_io.h"
#include *"xil_exception.h”
#include "xscugic.h"
static XGpioPs psGpiolnstancePtr;
extern XGpioPs_Config XGpioPs_ConfigTable[XPAR_XGPIOPS_NUM_INSTANCES];

© Copyright 2012 Xilinx

Page 41 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=ug821-zynq-7000-swdev.pdf

e

static int iPinNumber = 7; /*Led LD9 is connected to MIO pin 7*/

XScuGic InterruptController; /* Instance of the Interrupt Controller */

static XScuGic_Config *GicConfig;/* The configuration parameters of the
controller */

static int InterruptFlag;

void print(char *str);

extern char inbyte(void);

void Timer_InterruptHandler(void *data, u8 TmrCtrNumber)
{
print(’\r\n");
print(*'\r\n");
print('0@EEEEEEEAECEAECEAECEACEAREAREAANI\N") ;
print(" Inside Timer ISR \n \r ");
XTmrCtr_Stop(data, TmrCtrNumber);
// PS GPI10 Writing
print(""LED "LD9" Turned ON \r\n');
XGpioPs_WritePin(&psGpiolnstancePtr, iPinNumber,1);
XTmrCtr_Reset(data, TmrCtrNumber);
print(™ Timer ISR Exit\n \n \r');
print(*(@ \r\n');
print(\r\n)
print("\r\n");
InterruptFlag =
}

int SetUplnterruptSystem(XScuGic *XScuGiclnstancePtr)
{
/*
* Connect the interrupt controller interrupt handler to the hardware
* interrupt handling logic in the ARM processor.
*/
Xil_ExceptionRegisterHandler (XI1L_EXCEPTION_ID_INT,
(Xil_ExceptionHandler) XScuGic_InterruptHandler,
XScuGiclnstancePtr);

/*

* Enable interrupts in the ARM
*
/

Xil_ExceptionEnable();

return XST_SUCCESS;

3
int ScuGiclnterrupt_Init(ulé Deviceld,XTmrCtr *TimerlInstancePtr)
{
int Status;
/*
* Initialize the interrupt controller driver so that it is ready to
* use.
*/

GicConfig = XScuGic_LookupConfig(Deviceld);
ifT (NULL == GicConfig) {
return XST_FAILURE;

}
Status = XScuGic_Cfglnitialize(&InterruptController, GicConfig,
GicConfig->CpuBaseAddress);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Setup the Interrupt System
*/
Status = SetUplnterruptSystem(&InterruptController);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
3
/*
* Connect a device driver handler that will be called when an
* interrupt for the device occurs, the device driver handler performs
* the specific interrupt processing for the device
*/
Status = XScuGic_Connect(&InterruptController,
© Copyright 2012 Xilinx

Page 42 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

e

}

XPAR_FABRIC_AXI_TIMER_O_INTERRUPT_INTR,
(Xil_ExceptionHandler)XTmrCtr_InterruptHandler,
(void *)TimerlnstancePtr);
if (Status '= XST_SUCCESS) {
return XST_FAILURE;
ks

/*

* Enable the interrupt for the device and then cause (simulate) an
* interrupt so the handlers will be called

*/

XScuGic_Enable(&InterruptController, XPAR_FABRIC_AXI_TIMER_O_INTERRUPT_INTR);

return XST_SUCCESS;

int mainQ)

static XGpio GPlIOInstance_Ptr;

XGpioPs_Config*GpioConfigPtr;

XTmrCtr TimerlnstancePtr;

int xStatus;

u32 Readstatus=0,0ldReadStatus=0;

//u32 EffectiveAdress = OxEO00A000;

int iPinNumberEMIO = 54;

u32 uPinDirectionEMIO = 0OxO0;

// Input Pin

// Pin direction

u32 uPinDirection = 0x1;

int exit_flag,choice, internal_choice;

init_platformQ);

/* data = *(u32 *)(0x42800004);
print("0K \n");
data = *(u32 *)(0x41200004);
print("'OK-1 \n"");

*/

print("####H# Application Starts ####H##\n\r'");

print(*'\r\n");

//
//Step-1 :AXI1 GPIO Initialization
//

xStatus = XGpio_Initialize(&GP10Instance_Ptr,XPAR_AXI_GP10_0O_DEVICE_ID);

if(XST_SUCCESS 1= xStatus)
print('GP10 INIT FAILEDAN\r™);

//Step-2 :AXl GPIO Set the Direction

//

XGpio_SetDataDirection(&GPIOInstance Ptr, 1,1);
//

//Step-3 :AXI Timer Initialization

//

xStatus = XTmrCtr_Initialize(&TimerInstancePtr,XPAR_AXI_TIMER_O DEVICE_ID);

i F(XST_SUCCESS 1= xStatus)
print"TIMER INIT FAILED \n\r");
//

//Step-4 :Set Timer Handler
//

XTmrCtr_SetHandler (&TimerInstancePtr,
Timer_InterruptHandler,
&TimerlInstancePtr);

//

//Step-5 :Setting timer Reset Value
//

XTmrCtr_SetResetValue(&TimerlInstancePtr,
0, //Change with generic value
0xT0000000) ;

//

//Step-6 :Setting timer Option (Interrupt Mode And Auto Reload)

//
XTmrCtr_SetOptions(&TimerInstancePtr,
XPAR_AXI_TIMER_O_DEVICE_ID,
(XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION));

1/
© Copyright 2012 Xilinx

Page 43 Zyng ZedBoard Concepts, Tools, and Techniques

8/22/2012

e

//Step-7 :PS GPI0 Intialization

//
GpioConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPI0O_O_DEVICE_ID);
if(GpioConfigPtr == NULL)
return XST_FAILURE;
xStatus = XGpioPs_Cfglnitialize(&psCGpiolnstancePtr,
GpioConfigPtr,
GpioConfigPtr->BaseAddr);
iT(XST_SUCCESS != xStatus)
print(PS GP10 INIT FAILED \n\r');
//

//Step-8 :-PS GPIO pin setting to Output

//

XGpioPs_SetDirectionPin(&psGpiolnstancePtr, iPinNumber,uPinDirection);

XGpioPs_SetOutputEnablePin(&psGpiolnstancePtr, iPinNumber,1);
//

//Step-9 :EMIO PIN Setting to Input port
//

XGpioPs_SetDirectionPin(&psGpiolnstancePtr,
iPinNumberEMIO,uPinDirectionEMIO);

XGpioPs_SetOutputEnablePin(&psGpiolnstancePtr, iPinNumberEMIO,0);

//

//Step-10 : SCUGIC interrupt controller Initialization
//Registration of the Timer ISR

//
xStatus=

ScuGiclnterrupt_Init(XPAR_PS7_SCUGIC_O _DEVICE_ID,&TimerlInstancePtr);

iF(XST_SUCCESS = xStatus)
print(*" :(SCUGIC INIT FAILED \n\r*);
/

//Step-11 :User selection procedure to select and execute tests
//

exit_flag = O;

while(exit_flag = 1)

{
print(” SELECT the Operatlon from the Below Menu \r\n)
print(# #H HitH#E Menu Starts #iHHHH I
print(Press '1' to use NORMAL GPIO as an input (BTNU SW|tch)\r\n s
print(""Press "2 to use EMIO as an input (BTNR switch)\r\n");
print(Press any other key to Exit\r\n");

e L 0 L g 1 "y -
print(” HiHEHH R Menu ENds #HHHHHHHEHHHHHHH D) §

choice = |nbyte()
printf("Selection : %c \r\n",choice);
internal_choice = 1;
switch(choice)
{
//
// Use case for AXI GPIO
//
case "1":

exit_flag =

print(""Press Switch "BTNU" push button on board \r\n");

print(* \r\n");

while(internal_choice !'= "0%)

Readstatus = XGpio_DiscreteRead(&GPIOInstance Ptr, 1);
if(1== Readstatus && 0 == OldReadStatus)
{

print ("SSP SSSS SIS SIS SIS SIS SIS SSSSSSFSSSISN\N") ;
print(""BTNU PUSH Button pressed \n\r');

print("LED "LD9" Turned OFF \r\n');
XGpioPs_WritePin(&psGpiolnstancePtr, iPinNumber,0);

//Start Timer

XTmrCtr_Start(&TimerInstancePtr,0);

print(*"timer start \n\r');

//Wait For interrupt;

print("Wait for the Timer interrupt to tigger \r\n");
print("$$$$SESSP SIS PSS SP PSSP SIS SSSSSSSSSSN\N") ;
print(" \r\n");

while(InterruptFlag = 1);

InterruptFlag = 0;

© Copyright 2012 Xilinx
Page 44 Zyng ZedBoard Concepts, Tools, and Techniques

HHH\N") ;

8/22/2012

e

print("" #HHHHHHHHIHHH T HN\N) ;
print(""Press "0° to go to Main Menu \n\r ");

print(""Press any other key to remain in AXI GPIO Test \n\r ");
Print("" HHHHHHHHHEHH T \N.) ;
internal_choice = inbyte();

printf(*"Select = %c \r\n",internal_choice);

if(internal_choice = "0%)

print("'Press Switch "BTNU" push button on board \r\n");

b
OldReadStatus = Readstatus;

3
print(” \r\n");
print(\r\n");
break;

case "2 :
//
//Usecase for PS GPIO
//
exit_flag = 0;
print(*"Press Switch "BTNR" push button on board \r\n");
print(\r\n");
while(internal_choice != "0%)

{
Readstatus = XGpioPs_ReadPin(&psGpiolnstancePtr,
iPinNumberEMIO);
if(1== Readstatus && 0 == OldReadStatus)
{

print("$$SISEESSSEEIESISEESESE SIS SEEISSSSISSSSESISNI\N") ;
print("BTNR PUSH Button pressed \n\r');

print(""LED "LD9" Turned OFF \r\n');
XGpioPs_WritePin(&psGpiolnstancePtr, iPinNumber,0);

//Start Timer

XTmrCtr_Start(&TimerInstancePtr,0);

print(""timer start \n\r');

//Wait For interrupt;

print("Wait for the Timer interrupt to tigger \r\n");
print("$$SIEIESISIEIESITIESTSE ISP SSSIEFSSESISSSSISSSSNr\N™) ;
print(\r\n");

while(InterruptFlag = 1);

InterruptFlag = 0;

print("" #HHHHHIHHHHH AN ") ;
print(""Press "0" to go to Main Menu \n\r ");

print(""Press any other key to remain in EMIO Test \n\r ");
print (" HHHHHHHHHHHH A A A\ ") 5
internal_choice = inbyte();

printf(""Select = %c \r\n",internal_choice);
if(internal_choice = "0%)

print(""Press Switch "BTNR" push button on board \r\n");

¥
OldReadStatus = Readstatus;

3
print(\r\n");
print(" \r\n");
break;

default :
exit_flag = 1;
break;

}

b

print("\r\n");

p r— i nt("***********\r\n") ;
print("BYE \r\n");

p r i nt(' '***********\ r—\n") ;
cleanup_platform(Q);
return O;

© Copyright 2012 Xilinx
Page 45 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

& XILINX

© Copyright 2012 Xilinx
Page 46 Zyng ZedBoard Concepts, Tools, and Techniques 8/22/2012

	Chapter 1 Introduction
	1.1 About this Guide
	1.1.1 / Take a Test Drive!
	1.1.2 Additional Documentation
	1.1.3 Training Labs

	1.2 How Zynq AP SoC and Xilinx software Simplify Embedded Processor Design
	1.3 What You Need to Set Up Before Starting
	1.3.1 Software Installation Requirements:
	1.3.2 Hardware Requirements for this Guide

	Chapter 2 Embedded System Design Using the Zynq Processing System
	2.1 Embedded System Construction
	2.1.1 /Take a Test Drive! Creating a New Embedded Project With a Zynq Processing System
	2.1.2 /Take a Test Drive! Exporting to SDK
	2.1.3 /Take a Test Drive! Running the “Hello World” Application
	2.1.4 Additional Information

	Chapter 3 Embedded System Design Using the Zynq Processing System and Programmable Logic
	3.1 Adding soft IP in the PL to interface with the Zynq PS
	3.1.1 /Take a Test Drive! Check the Functionality of the IP in the PL
	3.1.2 /Take a Test Drive! Working with SDK

	Chapter 4 Debugging with SDK and ChipScope Pro
	4.1 /Take a Test Drive! Debugging with Software, Using SDK
	4.2 /Take a Test Drive! Debugging Hardware Using ChipScope Software

	Appendix A

