\VNET

Reach Further™

Implementing FFT Accelerators
with SDSoC™ Using Open-Source
Software and C-Callable IP

Tools: 2018.2 Vivado & SDSoC
Version: v2018.2-1
Date: 29 June 2018

© 2018 Avnet. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Avnet is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this

feature, application, or standard, Avnet makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights
you may require for your implementation. Avnet expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to
any warranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction

The Fast Fourier Transform (FFT) is one of the fundamental building blocks of Digital Signal Processing
(DSP) and Signal Analysis. Due to its frequent use, many device manufacturers offer code libraries and
intellectual property (IP) optimized for their architecture in order to achieve the highest possible
performance. Xilinx, for example, offers a fully customizable FFT IP core that is optimized for their FPGA,
Zyng® SoC, and Zynq MPSoC programmable logic devices. When it comes to general purpose computers
there are a few open source code libraries. One such open source library is the Fastest Fourier Transform
in the West (FFTW) library which can be obtained from

This paper looks at the performance of two different single-precision floating-point FFT implementations
using a Xilinx Zynq UltraScale+™ MPSoC device and the SDSoC Development Environment. The first
implementation uses version 3.3.7 of the FFTW library compiled for the ARM® Cortex®-A53 processor within
a Xilinx ZU3EG device. The second implementation is an FPGA accelerator using the Xilinx LogiCore™
IP FFT version 9.0 (XFFT) running in the programmable logic of the ZU3EG device.

Environment

The Avnet® UltraZed-EG™ Starter Kit was chosen as the test platform for evaluating FFT performance.
The UltraZed features the Xilinx Zynq UltraScale+ MPSoC ZU3EG device. The ZU3EG device features a
Processing System (PS) containing quad-core ARM Cortex-A53 application processors (APU), dual-core
ARM Cortex-R5 real-time processors (RPU), and an ARM Mali™-400 MP2 GPU. Linux was chosen as the
host operating system which provides symmetric multi-processing support. For an apples-to-apples
comparison, this paper only looks at running the FFTW library on a single APU core running at 1.1GHz.

The ZU3EG device also features FPGA programmable logic (PL) with 360 dedicated DSP slices to support
heavy computational workloads. The XFFT running in PL operates at a 300 MHz clock rate using the
pipelined-streaming 1/O architecture. During execution of the XFFT, the PS offloads processing to the PL
and then waits for the results to be computed. This processing model is characteristic of a heterogeneous
compute system with a host processor and co-processor accelerator. The Xilinx Zynq UltraScale+ MPSoC
architecture combines the heterogeneous system into a single chip solution.

The SDSoC platform for the UltraZed-EG Starter Kit can be downloaded from the zedboard.org website
using the link . The
platform is built using the 2017.2 Xilinx tool suite, but can be used with the 2018.2 release without issue.
For more details on the UltraZed-EG Starter Kit visit

Test Setup

Xilinx offers a feature-rich software defined development environment for implementing complex algorithms
in embedded processors and FPGA fabric. One such tool is the SDSoC Development Environment.
SDSoC stands for Software Defined System-on-Chip and allows for easy acceleration of software defined
functions using FPGA programmable logic. SDSoC takes functions defined in C/C++ and moves them to
FPGA fabric for acceleration. More details on SDSoC can be found on the Xilinx website at

For the purpose of this paper, SDSoC is the perfect environment to run FFT implementations in both
software and in FPGA fabric. Thus, a software based test bench was created as the main application
calling both the FFTW and XFFT libraries. FFT execution time performance was measured using a built-
in high-resolution timer operating at the 1.1GHz APU clock. Figure 1 depicts a block diagram of the SDSoC
based test bench.

Page 2

http://www.fftw.org/
http://www.zedboard.org/content/ultrazed-3eg-starter-kit-sdsoc-platform-sdsoc-20172
http://www.zedboard.org/product/ultrazed-eg-starter-kit
http://www.zedboard.org/product/ultrazed-eg-starter-kit
https://www.xilinx.com/sdsoc

ﬁynq UltraScale+ MPSoC ZU3EG Device \

Block Diagram Key
5D50C Application
Create
Test Data
File
» SD Card

Writer

\ Units Under Test (UUT) /

Figure 1 — SDSoC Test bench

Two methods of measuring execution time performance were used for XFFT analysis. The first method
measures the average time of a blocking XFFT function call. The second method measures the average
time of a non-blocking XFFT function call. Both methods perform 1000 function calls and compute the
average execution time per call. With non-blocking function calls the SDSoC application continues
execution after calling the PL accelerator without waiting for the accelerator to finish processing. A blocking
function call waits for the PL accelerator to complete processing before proceeding. Performing non-
blocking function calls helps overcome the overhead of transferring data between the PS and PL because
the next set of data can be loaded while the current data is being processed. Figure 2 demonstrates the
processing flow for the two measurement methods.

Blocking Execution Model
Functiclm call1 Functicin call 2
r 1 r 1

Load XFFT Execute XFFT = Unload XFFT Load XFFT Execute XFFT | Unload XFFT

Total Execution time |

‘ Non-blocking Execution Model
Funct\clm call 1

Load XFFT Execute XFFT = Unload XFFT

Function call 2
I

1

r 1

Load XFFT Execute XFFT = Unload XFFT

Function call 3
|

Load XFFT Execute XFFT | Unload XFFT

Total Execution time |

Figure 2 — PL Accelerator Execution Model

Page 3

Results

Table 1 below gives the average round-trip processing times per function call for the FFTW and XFFT
implementations for power-of-two FFT sizes ranging from 8 to 16384. Round-trip processing time includes
any overhead associated with data movement between PS and PL.

FET Size _FFTW Bloc_king _XFFT Non-bl_ockin_g XFFT

Execution Time (us) | Execution Time (us) Execution Time (us)
8 0.2 1.8 9.6
16 0.3 1.9 9.6
32 0.8 2.4 9.7
64 1.4 3.0 9.7
128 2.9 3.9 9.9
256 8.0 5.9 10.0
512 20.5 9.1 10.5
1024 56.9 16.0 13.0
2048 153.3 29.7 14.2
4096 399.1 57.0 25.0
8192 834.7 111.8 44.5
16384 2140.5 221.2 76.8

Table 1 — FFT Execution Time Performance

As seen in Table 1 above and Figure 3 below, the XFFT implementation has a longer execution time than
the FFTW library for FFT sizes smaller than 256. For FFT sizes equal to or larger than 256 the XFFT
implemented in the PL outperforms the FFTW library running on the ARM processor. Figure 3 also shows
XFFT sizes 8 through 32 have approximately the same processing time. This indicates that the overhead
of moving the data from the PS to the PL is overshadowing the FFT computation time. Thus, for small FFT
sizes it does not make sense to offload a single FFT operation to a PL accelerator.

N
o

XFFT Non-Blocking

60

% 50

2

[¢]

240

'_

> 30 mFFTW
2 mXFFT
(0]

(8]

°

[a

10

0 e B e WS - _ .. W
8 16 32 64 128 256 512 1024
FFT Size

Figure 3 — FFT Processing Times (8 — 1024 point)

Page 4

Figure 4 shows the processing times for FFT sizes larger than 1024 points. For the 16384 point FFT the
processing time for FFTW is 2141 microseconds, the blocking XFFT is 221 microseconds, and the non-
blocking XFFT implementation comes in at 77 microseconds. That corresponds to a speed up between
10X and 28X for executing FFT operations in the PL over the ARM processor.

2,500
. 2,000
%]
2
[}
£ 1,500
l_
> BFFTW
% 1,000 mXFFT
< XFFT Non-Blocking
% 500

o W __ . — L L

2048 4096 8192 16384
FFT Size

Figure 4 — FFT Processing Times (2048 — 16384 point)

As mentioned previously, smaller FFT sizes have a difficult time overcoming the data movement overhead.
One way to get around this is to group multiple small transfers into one large transfer, i.e. group 100 16-
point FFT data sets into one 1,600 word data transfer. Figure 5 below shows the results of doing this with
1,024 16-point FFTs. As shown in Figure 5, the average execution time for a 16-point FFT running in
programmable logic is drastically reduced and now out performs the FFTW implementation.

0.300

o
HV)
a1
o

0.200

0.150
mFFTW

0.100 mHLS FFT

Processing Time (us)

o
o
a
o

0.000 e
16

FFT Size

Figure 5 — 16-point FFT Processing Times with Large Data Transfer
(Note: HLS FFT was hand-written in C and compiled into programmable-logic using SDSoC)

Page 5

Table 2 below summarizes the implementation accuracy using the mean-square-error (MSE) when
compared to a double-precision MATLAB® model. The MSE statistic provides the average of the square
difference between the single-precision floating-point FFT implementation and the double-precision
floating-point MATLAB model. A small MSE indicates a good overall match between the model and the
implementation. As indicated in Table 2, the FFTW and XFFT implementations closely match the MATLAB
model.

FFT accuracy compared to double-precision MATLAB model
FFT Size | FFTW Mean Square Error | XFFT Mean Square Error

8 1.6e-12 1.6e-12
16 3.4e-12 3.5e-12
32 5.7e-12 6.5e-12
64 1.3e-11 1.2e-11
128 2.4e-11 2.2e-11
256 4.6e-11 4.6e-11
512 8.9e-11 8.9e-11
1024 1.8e-10 1.7e-10
2048 3.5e-10 3.4e-10
4096 7.4e-10 6.9e-10
8192 1.5e-09 1.4e-09
16384 2.9e-09 2.8e-09

Table 2 - FFT Implementation Accuracy

Conclusion

This paper presented two options for implementing the Fast Fourier Transform in the Zynq UltraScale+
MPSoC device family from Xilinx. The first option was a software only implementation using the FFTW
open-source code library which runs on the ARM Cortex-A53 processor. The second option used the Xilinx
LogiCore IP to implement the FFT in programmable logic as an accelerator function. Significant gains were
achieved with the accelerator which boosted execution time performance by a factor of 28 for the 16384-
point FFT size. Smaller FFT sizes have difficulty overcoming the data movement overhead, but
optimization can be achieved through strategic planning and control of data movement between the
processing system and programmable logic. For the 16-point FFT size, execution speedup of 2.6X is
possible with an accelerator when compared to the FFTW library running on the A53 processor.

Page 6

Appendix A: Compiling FFTW for the ARM Cortex-A53
processor

This section describes the steps necessary to compile the FFTW library for use with the Zynq UltraScale+
MPSoC application processor. The following steps assume that appropriate Xilinx tools have been installed
and the OS being targeted is Linux. The procedure below can be performed on a Windows machine, but
it is recommended that a Linux machine is used (Note: the steps outlined below have not been tested in
the Windows environment). Anywhere the <> brackets are used requires a replacement with a path for
your specific environment — the text has also been changed to orange for your convenience.

1. Download the FFTW 3.3.7 source code from www.fftw.org/download.htm! and extract to your
desired location, i.e. ~/fft_1ib/fftw/.

Note: The rest of these instructions assume that ~/£ft 1ib/fftw is the location you
extracted the source files to. If you used a different location then adjust accordingly.

2. Create a build directory in ~/£ft 1ib/fftw,i.e. ~/fft 1lib/fftw/build
3. Change directory to ~/££ft 1ib/fftw/build
4. Create an install directory in ~/£ft 1lib/fftw/buildi.e. ~/fft lib/fftw/build/install
5. Setup your environment by executing the following on the Linux command line (assumes bash
shell is being used)
a. export CROSS COMPILE=aarch64-linux-gnu-

b. source <xilinx-install-path>/SDK/2018.2/settings64.sh

6. Create a toolchain.make file with the following contents (this is for the A3 architecture, the A9
architecture uses a different toolchain):

set (CMAKE SYSTEM NAME Linux)
set (CMAKE SYSTEM PROCESSOR arm)
set (CMAKE C COMPILER aarché64-linux-gnu-gcc)

(
(
(
set (CMAKE CXX COMPILER aarch64-linux-gnu-g++)
(CMAKE INSTALL PREFIX <full-path-to-your-fftw-directory>/build/install)
(

CMAKE FIND ROOT PATH <Xilinx-install-
path>/SDK/2018.2/gnu/aarch64/1lin/aarch64-1linux/bin)

7. Atthe Linux command prompt execute:
cmake -D CMAKE TOOLCHAIN FILE=toolchain.make -D CMAKE INSTALL PREFIX=<full-

path-to-your-fftw-directory>/build/install <full-path-to-your-fftw-directory>

8. When cmake completes execute:
ccmake .

Page 7

http://www.fftw.org/download.html

9. A menu will open that looks like:

BUILD_SHARED_LIBS

BUILD_TESTS

CMAKE_BUILD_TYPE

CMAKE_INSTALL_PREFIX /home ftest/ fft_1ib/fftw/build/install
CMAKE_TOOLCHAIN_FILE /home /test/ Fft_1ib/fftw/build/toolchain.make
ENABLE_AVX

ENABLE_AVX2

ENABLE_FLOAT

ENABLE_LONG_DOUBLE

ENABLE_OPENMP

ENABLE_QUAD_PRECISION

ENABLE_SSE

ENABLE_SSE2

ENABLE_THREADS

WITH_COMBINED_THREADS

Navigation within the cmake menu is performed using the arrow keys on your keyboard. To
change/edit an option, navigate to the appropriate line and then press enter on the keyboard.

a. Change BUILD SHARED LIBS to OFF by pressing enter on your keyboard

b. Move the cursor to the ENABLE FLOAT line and change it to on by pressing enter on your
keyboard

c. Type c to configure
d. Type g after configuration completes to generate the Makefile and exit the cmake menu

10. At the Linux command prompt execute:
make

11. When make completes execute the following at the Linux command prompt:
make install

12. The following files will be populated in your ~/£ft 1ib/fftw/build/install directory

lib/libfftw3f.a
include/fftw3.h

These two files are needed for your SDSoC environment to correctly include and link the FFTW
library

13. In your SDSoC project (assuming you have a project already set up that you want to include
FFTW in, if not create one)

a. Right-click on the project you want to add FFTW to and select c/c++ Build Settings

Page 8

b. Underthe c/c++ Build 2> Environment menu set a build variable named FFTLIB DIR
that points to your ££t_1ib directory

: Properties for FFt_16k

= Environment

le=T -
> Resource
Builders Configuration: | Debug [Active] > | | Manage Configurations... |
¥ C/C++Build
Build Variables
Environment Environment variables to set Add...
Logging Variable Value Origin —
; elect...
Settings CWD : S{HOME}/SDx_works USER: CONFIG f——"

Tool Chain Editor FFTLIB_DIR S{HOME}/Fft_lib USER: CONFIG | Edit.. |

» C/C++General PWD | S{HOMEJ}/SDx_works USER: CONFIG Delet
Project References s

Run/Debug Settings @ Append variables to native environment | Undefine |

() Replace native environment with specified one

| Restore Defaults | | Apply

@ | Cancel | [OK J

c. Click on settings under c/c++ Build

d. Assuming you are using C++, expand the sps++ Compiler - Tool Settings. If you
are using C then expand the spscc Compiler = Tool Settings.

e. Under sps++ Compiler - Directories add the path location of your include directory,
i.e. ${FFTLIB DIR}/fftw/build/install/include directory

: Properties For Fft_16k

e Settings T
> Resource r
Builders ¥ Tool Settings | M Devices | # Build Steps Build Artifact |) Binary Parsers *
¥ C/C++Build i
] e » & SDSCC Compiler include Paths & & § &
Build Variables ¥ & SDS++ Compiler "..fsrc"
Environment ;i
o # symbols S{FFTLIB_DIR}/fftw/build/install/include
09?"\9 & warnings
5ett|ngs. . (& Optimization
Tool Chain Editor (& Debugging
> C/Ct+ General ¢ Profiling
Project References
Run/Debug Settings & Miscellaneous
» (& Inferred Options
> B SDS++ Linker
’ -
® | cancel | [OK J

Page 9

f. Under sps++ Linker > Libraries add fftw3f tothe Libraries dialog and the path

location of the library (i.e. $ {FFTLIB DIR}/fftw/build/install/lib) tothe Library
search path dialog

. Properties For FFt_16k

e Settings

-

" Resource & Tool Settings | M Devices | # Build Steps Build Artifact Binary Parsers | *|*
Builders
¥ C/C++Build > & SDSCC Compiler Libraries (-) 2 &8 8
Build variables » & SDS++ Compiler FFtw3F
Environment v & SDS++ Linker
Logging General
Settings 2 Libraries
Tool Chain Editor & Miscellaneous
b C/C++General (2 Linker Script
Project References > (# Inferred Options
Run/Debug Settings
Library search path (-L) & o 28

S{FFTLIB_DIR}/FFtw/build/install/lib
@

Cancel [OK J

14. Click OK and exit the project settings menu

15. You have successfully included the FFTW library for your ARM Cortex-A53 processor, see the
fftw3.h header file for function prototypes and check out

http://www.fftw.org/index.html#documentation for appropriate usage of the library functions

Page 10

http://www.fftw.org/index.html#documentation

Appendix B: Creating a C-callable library for the Xilinx
LogiCore IP FFT (v9.0)

Two different methods were employed when creating the C-callable XFFT library. This section covers both
methods and why they were used. Anywhere the <> brackets are used requires a replacement with a path
for your specific environment — the text has also been changed to orange for your convenience.

Method 1: Direct packaging of the XFFT IP

This method packages the XFFT IP directly without opening Vivado® and allows for full customization of
the XFFT IP. There are some issues with using the run-time configurable transform length option, which
will be explained in more detail for method 2. The following steps outline packaging of a C-callable library
using a static FFT size and using the Xilinx LogiCore XFFT (v9.0) IP. These steps follow the command-
line method defined in Chapter 4 of Xilinx UG1027 (v2018.2).

1. Create afolder to put your files, i.e. ~/£fft lib/xfft

Create a header file containing constants and function prototypes for the XFFT functions being
compiled. For this example there are two functions

#* xffr.hpp */

#ifndef XFFT_H_
#define XFFT H

#include "stdintc.h"
#define N FFT 16334

typedef uwinté4 t data t;
typedef uintlé t config t;

void xfft(data t x[N_FFT], data_t y[N_FFT] }:
void xffr config(config t config[l] }:

#endif

The x££t () function is used to call the accelerator while xfft config () is used to configure the
accelerator (i.e. forward versus inverse, etc.). Each argument must map to a physical AXI Interface
on the underlying accelerator. For detailed port information for the XFFT IP please see PG109.

Note: The data type for x & y is given asuinté64_t. The XFFT core has a 64-bit AXI input interface
that expects the imaginary component in the upper 32-bits and the real component in the lower
32-bits. We could create a struct or use the complex<float> type instead of uint64 t and rely
on the SDSoC compiler to pack the data into a 64-bit container before sending it to the XFFT
accelerator. The important thing is making sure the size of the data being transferred is aligned
with the size expected by the accelerator.

Page 11

2. Create a makefile with function argument mapping and parameter definitions
a. Add the sdx_pack command to the makefile

sdx_pack -header xfft.hpp -lib libxfft.a \

b. Add the function argument map to the makefile

-func xfft -map x=S AXIS DATA:in -map y=M AXIS DATA:out -func-end \
-func xfft config -map config=S AXIS CONFIG:in -func-end \

The purpose of the function argument map is to map software arguments to physical
interfaces on the accelerator.

There needs to be a separate function map for each software function, but they can be co-
located in the same makefile as shown above. You can see that the xfft config()
function parameter config maps to the s ax1 conric (configuration) interface of the
XFFT IP core. It is possible to get rid of the xff config() function and add a new
argument to xfft (). However, it's best to separate configuration from processing so the
accelerator does not get configured each time it is called. This in turn reduces the
processing overhead. The accelerator can be configured once at the beginning of the
application and then called multiple times before reconfiguring.

c. Add the IP repository path to the makefile

_lp
<install directory>/Vivado/2018.2/data/ip/xilinx/xfft v9 0/component.xml
-control none \

d. Add parameter customizations to the makefile

-param transform length="16384" \

-param implementation options="pipelined streaming io" \
-param data format="floating point™ \

-param input width="32" \

-param phase factor width="24" \

-param output ordering="natural order" \

The -param flag sets parameters for the IP which would typically correspond to a HDL
generic parameter. For example, the XFFT IP has a parameter called data format
which is setto floating point above. Chapter 4 of PG109 lists all of the available User
Parameters for the XFFT IP as well as acceptable values.

e. Add the target device family and operating system to the makefile

-target-family zynquplus -target-cpu cortex-a53 -target-os linux \

Page 12

The final Makefile is shown below
all: libxfft.a

libxffr.a: xfft.hpp
sdx_pack -header xfft.hpp -1lib libxfft.a A
—-func xfft -map x=5_AXIS5 DATA:in -map y=M AXIS DATA:out -func-end A
—func xfft_config -map config=5 AXIS CONFIG:in -func-end AN
-ip fopt/Xilinx/Vivado/2018.2/data/ip/xilinx/xfft v9 O/component.xml -control none %
-param transform length="16384" \
-param implementation options="pipelined streaming io" AY
-param data_ format="flocating_point" A
-param input_ width="32" \
-param phase_factor width="24" A
-param output_ordering="natural order" AN
—target-family zynguplus -target-cpu cortex-a53 -target-os linux N\
-verbose

clean:
rm -rf reports

ultraclean:
rm -rf reports
rm -rf _sds .Xil

3. Packaging the IP

a. Open the Linux terminal if not already open and execute
source <install directory>/SDx/2018.2/settings64.sh

b. From the terminal navigate to the location where you saved your header file and Makefile
— if they are not all in the same directory move them there now (i.e. ~/fft lib/xfft/)

c. Atthe command line type make and press enter

d. After the build completes you should see a 1ibxfft.a file in the directory. This file is
used by the SDS++ linker to include the accelerator in your SDSoC project.

4. To include your C-callable IP in SDSoC

a. Right-click on the project you want to add XFFT to and select c/c++ Build Settings

b. Assuming you are using C++, expand the sps++ Compiler underthe Tool Settings
tab. If you are using C then expand the spscc Compiler.

c. Under sps++ Compiler = Directories add the path location of your directory
containing the x££t .hpp file (i.e. /home/<user>/£fft lib/xfft — Note: figure below
uses environment variable FFTLIB DIR defined in Appendix A as
/home/<user>/fft_1ib)

o Properties For FFt_16k

&) Settings

-

* Resource -
Builders & Tool Settings | M Devices | # Build Steps | “’Build Artifact | [z Binary Parsers | "

¥ C/C++Build > & SDSCC Compiler Include Paths & = &8 §

Build Variables v & SDS++ Compiler " Jsrc”

Environment ¢ symbols S{FFTLIB_DIR}/fftw/build/install/include

Logging # warnings S{FFTLIB_DIR}/xFft

Settings (% Optimization

Tool Chain Editor 2 Debugging
b C/C++General & Profiling

Project References
Run/Debug Settings

(2 Directories
& Miscellaneous
» (& Inferred Options
> B SDS++ Linker

@ Cancel OK

Page 13

d. Under sps++ Linker = Libraries add xfft tothe Libraries (-1) dialog and the
path location of the 1ibxfft.a library (i.e. ${FFTLIB DIR}/xfft) to the Library search
path (-L) dialog (figure below)

% Properties for FFt_16k

I Settings

-

» Resource =
Builders & Tool Settings | B Devices | # Build Steps Build Artifact | [} Binary Parsers |
¥ C/C++Build » & SDSCC Compiler Libraries (1) 8 & 2 #
Build Variables » & SDS++ Compiler FFw3F
Environment ¥ & sDS++ Linker xFFt
Logging & General
Settings (& Libraries
Tool Chain Editor # Miscellaneous
» C/C++General (2 Linker Script
Project References > (& Inferred Options

Run/Debug Settings

Library search path (-L) & = 8 F
S{FFTLIB_DIR}/fftw/build/install/lib
S${FFTLIB_DIR}/xFFt

@ Cancel oK
5. Click OK and exit the project settings menu

6. You have successfully included the XFFT library

a. Touse XFFT make sure to call xt£t _config() with the correct configuration parameters
before calling xfft ()

b. You do not need to specify the x££t () function for hardware acceleration within the
SDSoC GUI — C-callable IP are hardware accelerated by definition

c. Configuration parameters are dependent on your implementation and will vary based on
how you parameterized the XFFT IP in your params.xml file — for more details on the
XFFT configuration interface see PG109

Method 2: Packaging Using a HDL Wrapper

There are some issues with packaging the XFFT IP directly with the run-time configurable transform length
configuration option. In order to transfer a variable amount of data using SDSoC from the PS to the PL,
the data copy (or zero_copy) pragma must be used to specify the amount of data. The copy pragma can
use a run-time determinable parameter to decide how much data to move, but the parameter used to
compute this information must be part of the function call. The following example illustrates this point.

Example — using copy pragma to specify variable length transfer between PS and PL:

#pragma SDS data access_pattern (X:SEQUENTIAL, y:SEQUENTIAL)
#pragma SDS data copyisize[0:0], x[0:*size], v[0:*size])
#pragma 5D5 data data mover (x:BRXTDMA STMPLE, y:AXTDMA STMPLE)
wvoid =fft(int size[], data t x[], data t ¥[] }:

Page 14

In the above example the size parameter is needed in the function prototype to determine the amount of
data to move from PS to PL. For C-callable IP, there must be a one-to-one mapping between the function
arguments and the ports on the IP. Thus, there must be an interface port on the IP that we can map the
size argument to. This is where the HDL wrapper comes in. The HDL wrapper provides an AXI-Stream
interface for the size argument that is left unconnected internally. That way SDSoC requirements are
satisfied and we can use a run-time configurable FFT size. The following steps work through creating and
packaging the XFFT IP using Vivado.

1. Create a Vivado project named fft_ip and click Next

o New Project

Project Name
Enter a name for your project and specify a directory where the project data files will be stored, '

Project name: | fft_ip
Project location: |/media/sf_sharedfivivado_projects E

+| Create project subdirectory

Project will be created at: /media/sf_sharedfvivado_projects/fft_ip

Cancel

2. For the project type select RTL Project and check the “Do not specify sources at this time” box
then click Next

x New Project

Project Type
Specify the type of project to create. ‘

« RTLProject
You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

+| Do not specify sources at this time

Post-synthesis Project: You will be able to add sources, view device resources, run design analysis, planning
and implementation.

10 Planning Project
Do not specify design sources. You will be able to view part/package resources.

Imported Project
Create a VWivado project from a Synplify, XST or ISE Project File.

Example Project
Create a new Vivado project from a predefined template.

Cancel

Page 15

3. Select the Avnet UltraZed-3EG IO Carrier Card board and click Next
Note: this step assumes that you have already installed the Ultrazed 10 Carrier Card board
definition files which can be found at
http://zedboard.org/sites/default/files/documentations/UltraZed Board Definition Files v2017 2
Release All CC 5 0.zip)

New Project

Default Part
Choose a default Xilinx part or board for your project. This can be changed later. ‘

Select: {8t Parts B Boards

v Filter/ Preview

Vendor: All w
Display Name: | All ~
Board Rew: Latest w
Search: | O w
Display Name Vendor Board Rev Part
| @ Avnet UltraZed-3EG 10 Carrier Card em.avnet.com 1.0 @ xczuSeg-sf‘:
¢ 3

e oo sherees

Cancel

4. Click Finish to create the project

5. Create a new block design by clicking on “Create Block Design” under the Flow Navigator window
a. Name the block design xfft and click OK

Create Block Design

Plzase specify name of block design.

Design name: |>d"ft |
Directory: & =Local to Project= -
Specify source set: Design Sources w

|
2]
C “ Cancel

Page 16

http://zedboard.org/sites/default/files/documentations/UltraZed_Board_Definition_Files_v2017_2_Release_All_CC_5_0.zip
http://zedboard.org/sites/default/files/documentations/UltraZed_Board_Definition_Files_v2017_2_Release_All_CC_5_0.zip

6. Add the Fast Fourier Transform IP to the block design canvas

xfft_0

M_AXIS_DATA +
event_frame_started
=+ S_AXIS_DATA event_tlast_unexpected
=+ S_AXIS_CONFIG event_tlast_missing
aclk event status channel _halt
event_data_in_channel_halt
event_data_out_channel_halt

Fast Fourier Transform

7. Double-click the IP to configure
a. On the Configuration tab
i. Setthe Transform Length to the desired maximum.
For this study the maximum was set to 16384
ii. Setthe Architecture to “Pipelined, Streaming 1/0”
iii. Check the “Run Time Configurable Transform Length” box

o Re-customize IP

| Fast Fourier Transform (9.0) ‘

i @ Documentation IP Location

IP Symbel Implemer = Component Name xfft_0
Show disabled ports

Configuration Implementation | Detailed Implementation

Number of Channels

Transform Length 16384 -

Architecture Configuration
Target Clock Frequency (MHz) 250 [1-1000]

Target Data Throughput (MSPS) |50 [1-1000

Architecture Choice

Automatically Select

® Pipelined, Streaming /0
Radix-4, Burst I/0
Radix-2, Burst I/0

Radix-2 Lite, Burst /0

+| Run Time Configurable Transform Length

0K | | Cancel

Page 17

b. On the Implementation tab
i. Set Data Format to “Floating-Point”
ii. Set Output Ordering to “Natural Order”
iii. Leave other fields with the default values

5 Re-customize IP

Fast Fourier Transform (9.0) ‘

@ Documentation IF Location

IP symbol Implemeni = Component Name |xfft_0

Show disabled ports
Configuration |Implementation Detailed Implementation

[Data Format | Floating Point ~
Scaling Options Scaled

Rounding Modes | Truncation

Precision Options

Input Data Width | 32 Phase Factor Width | 24 ~

Control Signals

[—
[_ _
TR AFI AT 13 ACLKEM ARESETn (active low)
wene_daca_In_cnannel_nak
em_dera_ow_cnannel_nak

ARESETn must be asserted for a minimum of 2 cycles

Output Ordering Options

Output Ordering | Natural Order v
Optional Output Fields Throttle Scheme
HK_INDEX OVFLO * Non Real Time Real Time
4 ¥

oK | | Cancel

Page 18

c. On the Detailed Implementation tab
i. Under Optimize Options set the Complex Multipliers option to “Use 4-multiplier

structure”

5 Re-customize IP

[

Fast Fourier Transform (9.0)

@ Documentation IP Location

IP Symbol Implemeni = Component Name xfft_0

Show disabled ports
Detailed Implementation

Configuration | Implementation

~
Memory Options
Data Phase Factors
u_tsis pers +F Mumber of stages using Block RAM for Data and Phase Factors | 7 w
avam_Prama_scamed
St 5 axi5_Dare @uenr_tlar_umesmecned
St 5_aKI5 OOHFIG wnem_tiac_mbsing
P LR _SCauE_CAanng nak Reorder Buffer
PO S
avare_dsca_pur_c nannl_nak
Optimize Block RAM Count Using Hybrid Memories
Optimize Options
Complex Multipliers | Use 4-multiplier structure (performance optimization) s
Butterfly Arithmetic | Use CLE Logic v
< >
oK | | Cancel

d. Click OK to finish customizing the IP

Page 19

8. Make the XFFT IP ports external
a. Right-click on M_AXIS_DATA and select “Make External”’. Vivado will add “_0” to the

end of the port name, so modify the port to remove the “_0”

xfft_0
+
event_frame started Block Interface Properties...
=+ S_AXIS_DATA event_tlast_unexpected ® Highlight 4
=4 S_AXIS_CONFIG event_tlast_missing
aclk event status channel_halt
event_data_in_channel_halt B Copy
event_data_out_channel_halt
Fast Fourier Transform Q. search..
W Select al
+ Addp..
Add Module..,
&5 Make External
IP Settings...

¥ alidate Design

Start Connection Mode

Make Connection...

Create Hierarchy...
Create Comment
4 Create Interface Port...
' Regenerate Layout

= Save as PDF File...

External Interface Properties ? 00 X
@ M_AXIS_DATA - & xfft 0
Name: M_AXIS_DATA M_AXIS DATA + i)
event_frame_started
Mode: MASTER =4 S_AXIS DATA event_tlast_unexpected

=+ 5_AXIS_CONFIG event_tlast_missing
aclk event_status_channel_halt

Connection: | = xfft_0_M_AXIS_DATA

Clock Part: There are no clock parts in this design, event_data_in_channel_halt

event_data_out_channel_halt

General = Froperties Fast Fourier Transform

b. Repeat step (a) for the aclk, S_AXIS_DATA, and S_AXIS_CONFIG ports

xfft_0

M_AXIS_DATA + Femeeef™% M_AXIS DATA
event_frame_started

S_AXIS_DATA =+ S_AXIS_DATA event_tlast_unexpected
S_AXIS_CONFIG =+ S_AXIS_CONFIG event_tlast_missing
aclk aclk event_status channel_halt

event_data_in_channel_halt
event_data_out_channel_halt

Fast Fourier Transform

Page 20

9. Create a HDL wrapper file
a. Inthe Sources window right click on xfft and select “Create HDL Wrapper”

Sources ¥ Design | Signals | Board ? 00 Diagram
Q T & + : sl @ a :
“ [Design Sources (1)

S wfft (fft.bd)
3 Constraints Source Mode Properties... Ctri+E

~ [Simulation Sourct = Open File Alt+C

> o osim_1 (1) Create HOL Wrapper. ..

View Instantiation Template

b. Choose “Copy generated wrapper to allow user edits” option in the pop-up dialog and
click OK

Create HDL Wrapper

You can either add or copy the HDL wrapper file to the project. Use
copy option if you would like to modify this file. ‘

Options
(®) Copy generated wrapper to allow user edits

Let Vivado manage wrapper and auto-update

?)

10. Add an AXI-Stream interface to the HDL wrapper for the “size” argument to map to

entity xfft_wrapper is|
port
M_AXTS DATA tdata : out STD_LOGIC VECTOR (63 downto O);
M_AXIS DATA tlast : out STD _LOGIC
M_AXIS DATA tready : in STD_LOGIC;
M_AXIS DATA tvalid : out STD LOGIC;
S_AXIS CONFIG tdata : in STD_LOGIC_VECTOR (23 downto 0);
_A¥IS CONFIG tready : out STD LOGIC;
_AXIS_CONFIG tvalid : in STD_LOGIC;
AYIS SIZE tdata : i1n STD_LOGIC_VECTOR (31 downto ©)
AXIS_SIZE tvalid : in STD_LOGIC;
_A¥IS DATA tdata : in STD _LOGIC VECTOR (63 downto 0);
_AXIS_DATA tlast : in STD_LOGIC;
AXIS DATA tready : out STD LOGIC;
_AXIS_DATA tvalid : in STD_LOGIC;
aclk : 1n STD_LOGIC
) .

endefft_wrapper;

i oo

93]
T

)]
T

L

93]

Page 21

11. Synthesize the design. When synthesis completes click on Cancel to close the pop-up

® synthesis Completed

0 Synthesis successfully completed.
Next
Bun Implementation
® Open Synthesized Design

View Reports

Don't show this dialog again

12. Package the project as IP
a. Goto Tools > Create and Package New IP
b. Click Next
c. Choose “Package your current project” and click Next

8 Create and Package New IP

Create Peripheral, Package IP or Package a Block Design
Please select one of the following tasks. '

Packaging Options

o Package your current project
Use the project as the source for creating a new IP Definition.

Package a block design from the current project
Choose a block design as the source for creating a new IP Definition.

Select a block design:

Package a specified directory
Choose a directory as the source for creating a new IP Definition.

Create AXI4 Peripheral

Create a new AX|4 peripheral
Create an AX|4 IP, driver, software test application, IP Integrator AX14 VIP
simulation and debug demonstration design.

P
[2)

Page 22

d. Setthe IP Location to your desired output path (i.e. ~/ip) and select “Include IP generated
files” then click Next

0 Create and Package New IP

Package Your Current Project

Select the directory where the IP Definition will be created and the associated
options for packaging the current project.

IP location: /fhomeftestfip E]

Packaging IP in the project
Include .xci files

(®) Include IP generated files

‘\;;' < Back I Cancel

e. Click Finish and OK if you get a pop-up message about copying IP to your output location

f. On the “New IP Creation” window click Finish

g. A new Vivado project will open
i. On the “Package IP” window under “Packaging Steps > Identification” fill out the
information for your IP. This will be used later during the C-Callable IP
packaging steps in SDSoC

Project Summary x Package IP - xfft_wrapper x

Packaging Steps Identification
«/ Identification Vendor: avnet.com
Compatibility Library: cip
< File Groups Name: xfft_wrapper
Wersion: 1.0
Customization Parameters
Display name: wfft_wrapper_vl_0
«/ Ports and Interfaces
Description: wfft_wrapper_vl_0

Addressing and Memory
endor display name:

«/ Customization GUI

Company url:
Review and Package Root directory: /homeftest/ip
Xml file name: fhomeftestiip/component.xml

ii. Under “Packaging Steps > Review and Package” click Package IP

h. Close the Vivado project when the IP packaging has completed

Page 23

13. Change directory to the IP output location (i.e. ~/ip)
a. Create a new directory using the VLNV format (Vendor, library, name, and version). This
information was used in step 11.g.i.

For example, if your VLNV was
e Vendor = avnet.com
e Library=c_ip
o Name = xfft_wrapper
e Version=1.0

Then you would create a directory named avnet.com_c_ip_xfft wrapper_1.0.
Copy the contents of the IP output to your newly created directory.

Your directory structure should look like:

avnet.com_c_ip_xfft_wrapper_1.0

sim
5rC
Xgui
£ componentxml

14. The remainder of this procedure follows all steps outlined in Method 1 with a few minor
differences noted below

a. Update xfft.hpp to account for port changes and to add data copy pragmas (updates
highlighted in yellow below)

f# xfft.hpp */f

#ifndef XFFT_H_
#define XFFT H

#include "stdint.h"
#define N_FFT 16384

typedef uinté4_t data t;
typedef struct{char data[3]:} config t;

fpragma 5DS data access_pattern (x:5EQUENTIAL, vy:SEQUENTIAL)

#pragma SDS data copy(size[0:0], x[0:*size], y[0:*size])
fpragma 5DS data data mover (x:BRXTDMA STIMPLE, y:AXTDMA STMPLE)
void xfft(int size[], data t x[], data t y[])

vold xfft_config(config t config[l] }:

#endif

Note: 1 — Argument config Of function xfft config changed from a 16-bit to 24-bit data type to
allow for run-time selection of the FFT size
2 — AXIDMA_SIMPLE data mover should only be used when doing blocking x££t function calls

Page 24

Update the Makefile to incorporate the size argument, update the IP location, and remove
parameter settings (since these were done when the IP was packaged in Vivado). An
updated Makefile is shown in the figure below — updates are highlighted.

all: libxfft.a

libxfft.a: xfft.hpp
sdx_pack -header xfft.hpp -1lib libxfft.a AN
—func xfft -map size=5_RXI5 SIZE:in -map x=5_AXIS DATAR:in -map y=M RAXTS DATZA:out -func-end A
—-func xfft config -map config=5_ AXIS CONFIG:in -func-end \
-ip ~/ipfavnet.com c ip xfft wrapper_ l1.0/component.xml -control none \
—target-family zynguplus -—-target-cpu cortex-a53 -target—-os linux %
-verbose

cleamn:
rm -rf reports

ultraclean:
rm -rf reports
rm -xf =ds .Xil

Complete IP packaging as defined in Method 1 starting with step 3.

Page 25

Revision History

Date Version Revision
6/13/2018 V2017.4-1 | Initial release for 2017.4
7/2/2018 V2018.2-1 | Updated for SDx 2018.2 C-Callable IP packaging updates

Page 26

	Introduction
	Environment
	Test Setup
	Results
	Conclusion
	Appendix A: Compiling FFTW for the ARM Cortex-A53 processor
	Appendix B: Creating a C-callable library for the Xilinx LogiCore IP FFT (v9.0)
	Method 1: Direct packaging of the XFFT IP
	Method 2: Packaging Using a HDL Wrapper

	Revision History

