Expanding KRIA SOM family...

AMD Kria[™] K24 SOM and KD240 Drives Starter Kit Product Overview

Expanding Our Portfolio with System-on-Modules

A Wide Range of Deployment Methods

Developing and Deploying with a SOM

What is a SOM

Small form factor embedded PCB at the heart of the system (processor, DDR, peripherals)

Abstracts the Hardware

Design at the board-level instead of the chip-level

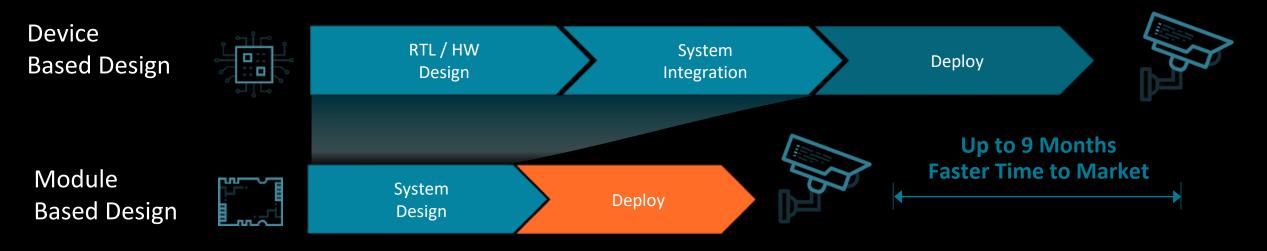
Production-Ready

Plugs directly into end product for production deployment

[Public]

Typical SOM Users

Why SW and HW Users Choose SOMs?


- Edge-based Production Hardware GPUs & PCs not suited for edge
- Enable Immediate Development
 AI & application SW development can be decoupled from in-house hardware availability

- Faster Time to Market Up to 9 months savings vs. pure chip-down
- Focus Resources on Value Add
 HW Developer resources are a precious commodity

Accelerating & Simplifying Design Cycle & Productization

SOM Advantages over Chip-Down Design

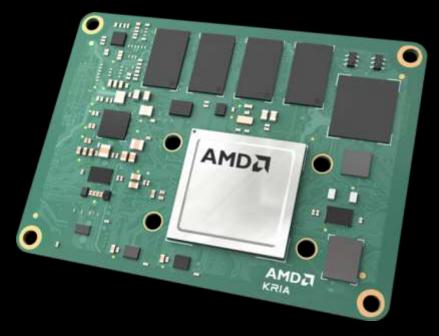
- Reduce development time by designing at higher abstraction
- Lower BOM cost
- Simplified inventory management
- Turnkey longevity and product life cycle management

Faster Productization for High Volume Deployment

Introducing the AMD Kria[™] K26 SOM

Pre-Built HW Acceleration

- Application designs included for common AI functions
- 'Out-of-the-box' ready for SW developers


3X Performance¹

- Al at half the power with low latency
- Accelerates the whole application from AI to control

Fut • Ad

Future Proof

- Adaptable to changing AI and sensor requirements
- Ruggedized for industrial life cycles
- Path from concept to production to design revisions

Embedded Design Simplicity with System Flexibility

1: AMD Benchmarks vs. Jetson Nano published data (https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/)

AMD together we advance_

K26 Adaptive SoM for Deployment in the Factory

Based on the ZynqTM UltraScale+TM MPSoC Architecture

ADAPTIVE SoC

Arm[®] A53 Quad-Core

R5F Dual-Core

Native ROS 2

Humble Hawksbill Ubuntu 22.04 256K

System Logic Cells for Custom Acceleration

4K60p H.264/265 Video Codec

77 x 60 x 11mm

AMDE

INTERFACES

245 I/O Flexible for Multiple **15 Cameras** Mix of SLVS-EC, MIPI, sub-LVDS

AMDE

TSN-Enabled 4x 10G Ethernet, Support for Converged Traffic **4x USB** Mix of USB 3.0 and 2.0 **4GB** 64-bit DDR4 Memory **Enhanced Security**

HW Root of Trust along with TPM 2.0¹

111111

Introducing the AMD Kria[™] System-on-Module Portfolio

KV260 Vision Al Starter Kit **K26** Production SOM Module

DEVELOP

AMDA

•-----

DEPLOY

AMD together we advance_

Accessible Vision Applications for SW & AI Developers

Security Cameras

Smart City

Retail Analytics

Machine Vision

Vision-Guided Robotics

Introducing the Kria KR260 Robotics Starter Kit

Native ROS¹ 2 Support

- Up to 5X productivity² with Kria[™] Robotics Stack
- C/C++ and RTL flexibility for HW/SW architects

Low Latency and Determinism

- Real-time response for high-performance machines
- Safety & Security for industrial-grade solutions

Complete Industrial Solution

- Pre-built interfaces for robotics and industrial solutions
- Simplified integration, faster time from out-of-box to deployment

Out-of-the-Box Ready for Software and Hardware Developers

1: Robotics Operating System

2: Testing conducted as of December 1, 2021, on test systems comprising Nvidia Jetson AGX Xavier Developer Kit and Jetson Nano Developer Kit using Isaac ROS SDK 4.6.1; Kria KV260 Starter Kit based on Kria K26 SOM, using Vitis Unified SW Platform 2021.2 and Kria Robotics Stack. Development time accounts for tool chain setup with ROS 2, cross-compilation of host code, and creation and build of accelerator implementing two functions: doublevadd_publisher and accelerated_doublevadd_publisher available at https://github.com/ros-acceleration/acceleration/acceleration/acceleration_examples.

Accelerating Path to Production by Up to 9 Months

SOM Advantages over Chip-Down Design

KR260 Kit for Development

Develop application with kit and Kria[™] Robotics Stack (KRS)

Design for K26 SOM

Small form factor embedded PCB based on Hardware adaptive SoC

Go to Production

Plug SOM directly into end-product for deployment

Target Applications for KR260 Robotics Kit

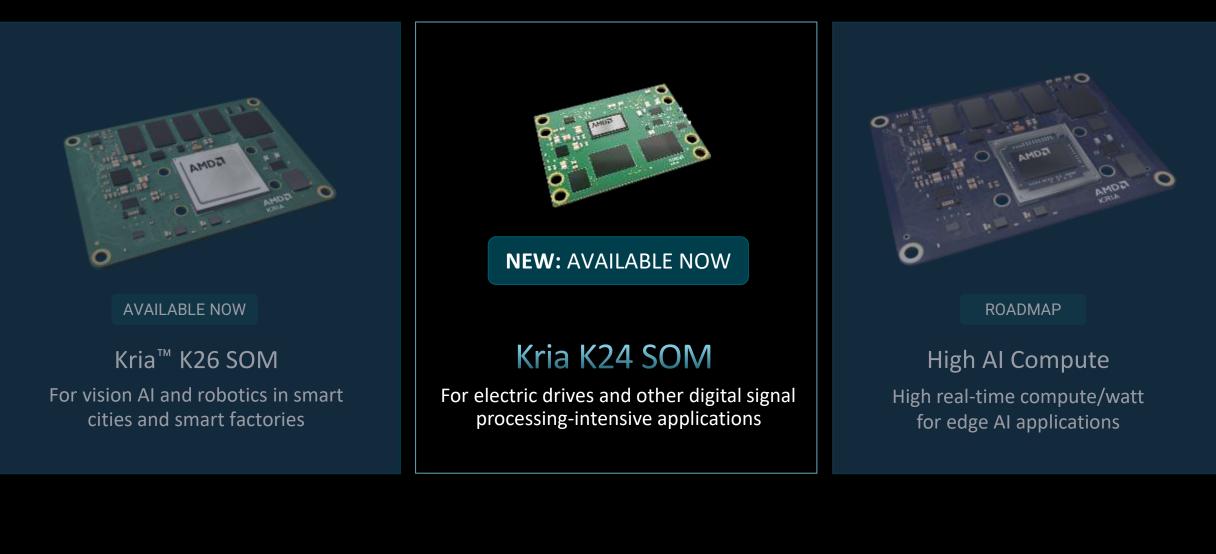
Robotics

Multi-Axis Control • Embedded Controller Multi-Camera Vision Al

- Collaborative Robots
- Surgical Robots
- AGVs, AMRs, and Aerial Robots

Real-Time Control • Predictive Maintenance Mixed Criticality • TSN

- Programmable Logic Controllers (PLC)
- Programmable Automation Controllers (PAC)
- Industrial Gateway and CNC Routers


Machine Vision

Low Latency • Fast High-Resolution Image Sensor Minimum CPU load, Maximum Bandwidth

- SLVS-EC Sensor-Based Camera
- USB-Stereo Camera
- 1GigE/10GigE Vision / CXP Over Fiber

AMD together we advance_

Expanding Our Portfolio of Adaptive System-on-Modules

Introducing the Kria[™] K24 SOM

BUILD POWER-EFFICIENT DSP SOLUTIONS

- High level of determinism, reliability, and security features via Zynq[™] UltraScale+[™] MPSoC
- Multiple motor connections and drives stage technologies for power-efficient compute
- About half the size of a credit card for low power consumption

DEPLOY SCALABLE & ADAPTABLE SYSTEMS

- Connector compatibility with Kria K26 SOM for scalability
- A plethora of sensors and peripherals support
- Over-the-air software updates and adaptable hardware for evolving standards

ENABLE EASY SIGNAL PROCESSING FOR FAST DEVELOPMENT

- Ready-to-use KD240 Drivers Starter Kit
- New Vitis[™] accelerated libraries for motor control application development
- Expanding development flows to Python and the MATLAB[®] Simulink[®] environment

Simplify DSP Development with a Scalable, Power-Efficient SOM

Kria K24 SOM Overview

Based on Zynq[™] UltraScale+[™] MPSoC Technology

ADAPTIVE SOC (Custom Device for Kria[™] K24 SOM)

Arm[®] Core Ubuntu OS

A53 Quad core R5F Dual core Supports latest 22.04 version

154K

System logic cells for custom acceleration

INT8

B2304 DPU support

INTERFACES

132 I/Os

Flexible for connecting multiple motors, sensors, and connectors

Industrial Ethernet

4x 1G Ethernet, support for converged traffic¹

4x USB2 GBMix of USB32-bit

3.0 and 2.0

32-bit LPDDR4 memory (w/ ECC config²)

Security Features HW Root of Trust along with TPM 2.0³

together we advance_

1: TSN is enabled only through programmable logic (PL)-based Ethernet interfaces 2: ECC support only available on industrial grade SKU of K24 SOM, 32-bit LPDDR4 @ 1066 Mbps

At the Heart of the K24 SOM: ZynqTM UltraScale+TM MPSoC

Single-Chip Whole Application Acceleration for High Compute Density

Custom MPSoC Optimized for K24 SOM

System-level capability for mixed-criticality, functional safety, cybersecurity, and HMI

Scalable Sensor Fusion

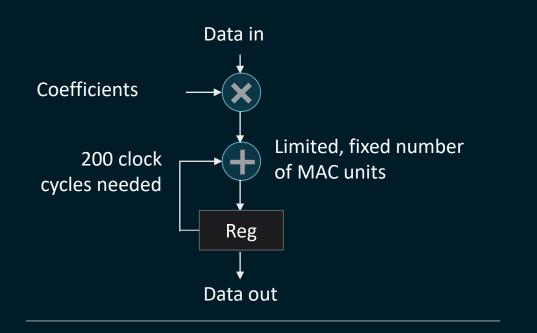
Compatible with wide assortment of environmental, orientation, and vision sensors

Real-Time Deterministic Networking

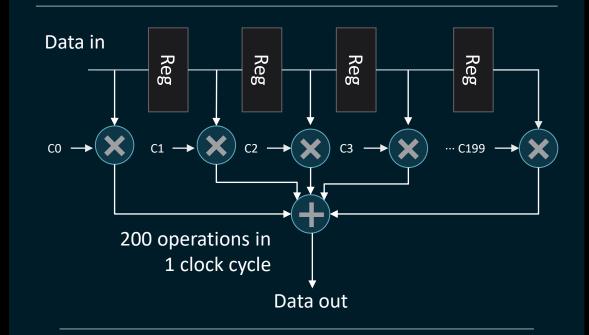
Industrial Ethernet capabilities unlocked from EtherCAT to TSN

Arm[®] Processing System

Applications and system decision making augmenting programmable logic



PROCESSING SYSTEM QUAD-CORE ARMO CORTEX*-A53 MEMORY INTERFACES SUBSYSTEM ARM* MALIT*-400MP2 DUAL-CORE ARM **ALATEORI** CORTEX-R5F SYSTEM GRAMMABLE LOGIC UNCTION TSN MOTOR CONTROL


Adaptive Computing Offers Higher Throughput due to Parallelism

Standard DSP Processor - Sequential

48 MSPS total at 1.2 GHz w/ 8 MAC units

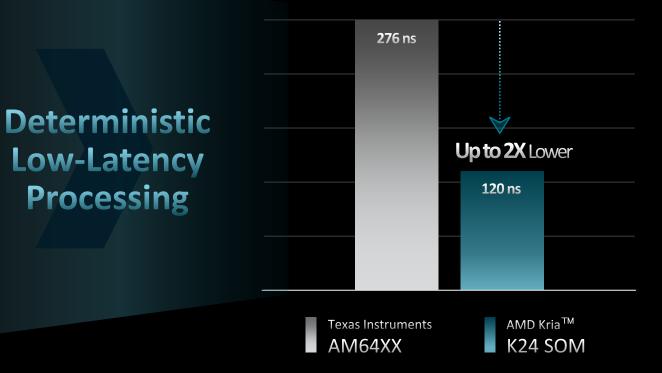
Adaptive SoC – Fully Parallel

200 MSPS total at 200 MHz w/ 200 MAC units

Clock frequency and number of MAC units can be adjusted to trade off power and performance

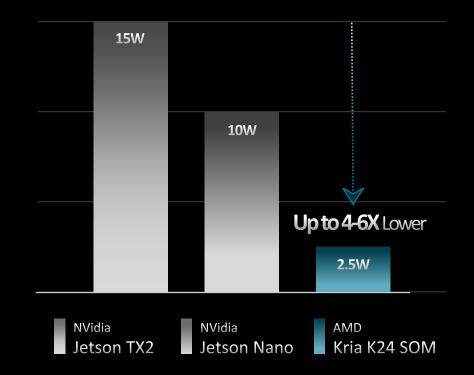
Delivering Real-Time Processing with K24 SOM

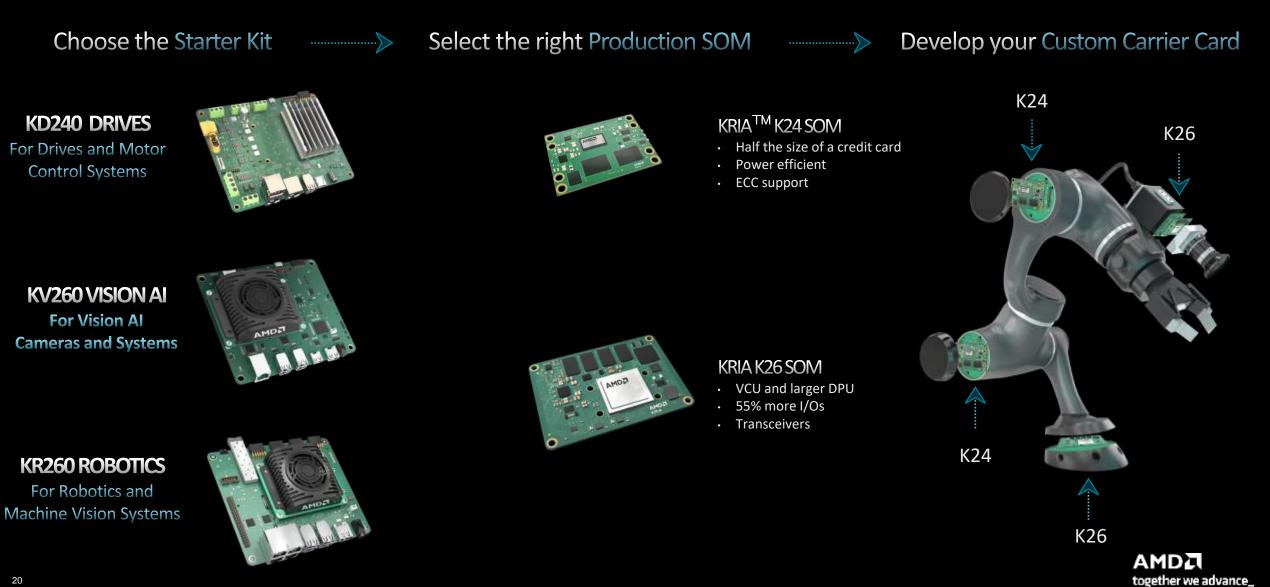
Resource Contention


Ready-to-use solutions for resource contention with offloading in programmable logic (PL)

Interference

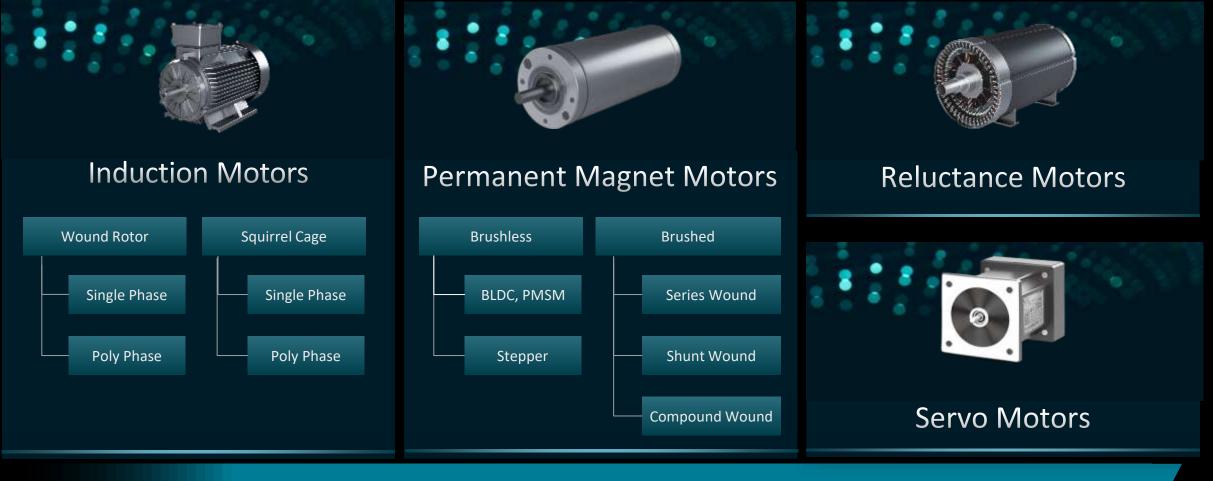
Interference mitigation at processor cache level with cache coloring


Latency Advantage Single Axis Drives Application


Enabling Power-Efficient Motor Controls

- Electric drives typically require passive cooling
- Adaptive computing with KriaTM K24 SOM can achieve the desired performance at a lower clock speed due to parallelism
- Results in lower total power consumption

Power Advantage over GPU-based Solutions


Benefit from the Scalable Portfolio of Kria SOMs

Target Applications for Embedded Developers

Kria[™] K24 SOM: Adaptable for a Variety of Motors & Drive Stages

In-house libraries and ecosystem solutions support all motors

Introducing the Kria KD240 Drives Starter Kit

End-to-End Solution for Embedded SW Developers

- A variety of motor control interfaces to build target DSP applications
- Implementing customizable designs without access to HW expertise
- Supported by SW tool flows and the latest Ubuntu OS

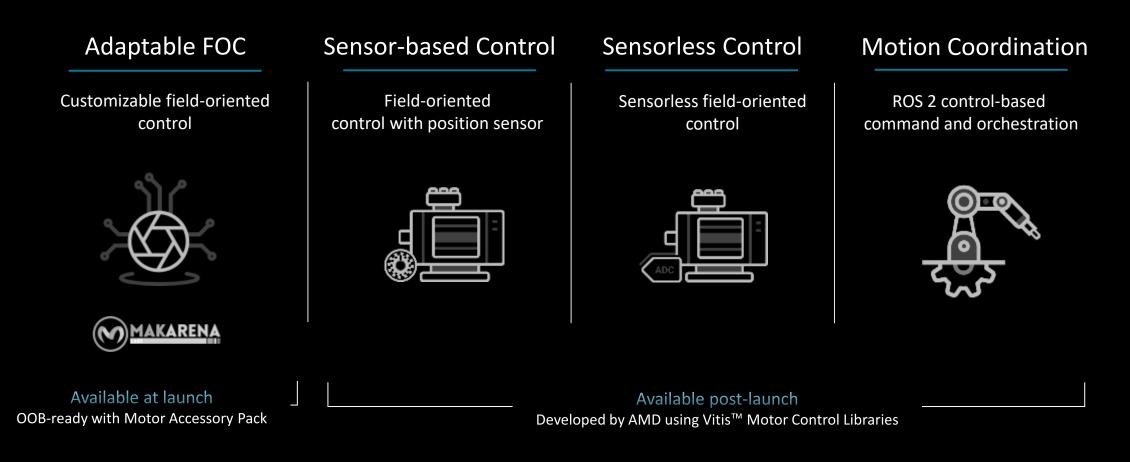
Cost-Effective, Faster Time to Deployment

- Affordable motor control solution for small to mid-sized providers
- Easy to use all-in-one platform; no power stage or extension boards needed
- Fast initial HW bring-up and prototyping using Kria[™] Motor Accessory Packs

Accessible to Design Communities

- Supported by open standards, app store, and free resources¹
- Active forum support to get your questions answered by the community

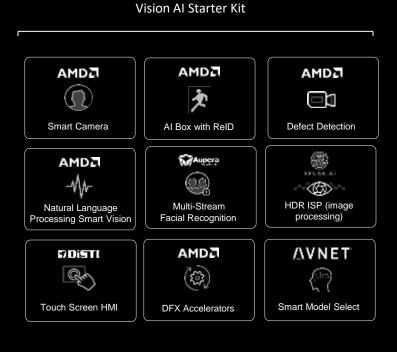
Kria KD240 Drives Starter Kit


Public

Design Path for Any Developer to Evaluate K24 Capabilities

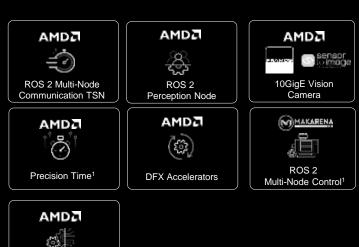
Python Developer	 Platform runtime orchestration with Python Fully paved road with prebuilt hardware libraries 	襣 python
AI Developer	 Customize AI Model Build custom AI inference application Configure AI processor to requirements 	AMD Vitis
Control System Developer	 Simulate Motor Control Leverage Vitis[™] Model Composer Implement enhanced motor control functionality 	📣 MathWorks
Roboticist	 Develop Robot Behavior via KRS Based on workspaces (vs. applications) Computational graph centric 	₩ROS2
Software Developer	 Customize Adaptive Drives Accelerate entire pipeline from SW Customized HW acceleration using HLS 	AMDZ Vitis
Hardware Developer	 Develop Using Full Custom RTL Ultimate flexibility through RTL Customize connectivity with catalog IP 	AMD Vivado

together we advance_

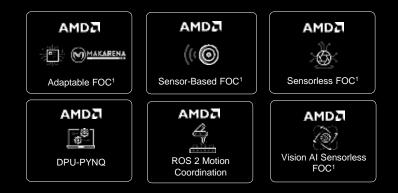

Accelerated Applications

Pre-Built Solutions without "K24 Place and Route"

Kria App Store for Edge Applications


A Wide Selection of Accelerated Applications for Evaluation and Deployment

Kria[™] KV260

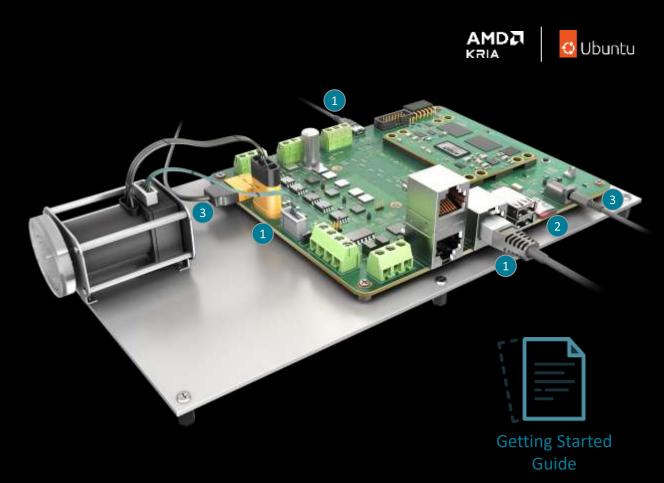

1: Coming soon

Kria KR260

Robotics Starter Kit

Kria KD240 Drives Starter Kit

Memory monitor & optimizer¹


25+ accelerated + demo apps (Vision, Robotics, Motor Control, and Healthcare)

> AMD together we advance_

KD240 Out-of-the Box Experience

Get Started with the KD240 Drives Starter Kit In 5 simple steps

- Connect micro-USB, Ethernet, and Motor Accessory Pack items*
- 2. Insert microSD card programmed with Ubuntu image
- 3. Power on the starter kit & motor
- 4. Download and install the "Sensor-based Control" accelerated application
- 5. Launch from Ubuntu command line and customize using Jupyter Notebook

Get started quickly, no FPGA experience needed

Out-of-the Box Ready with Kits and Apps

AMD Kria[™] KD240 Motor Accessory Pack (Available Now)

- Anaheim automation BLDC motor with quadrature encoder 10,000 RPM/24V/0.63A
- Adaptable sensor/sensorless field-oriented control app
- Sensor-based field-oriented control accelerated app

REV Robotics 2-in-1 Motor Kit Accessory (Coming Soon)

- Rev Robotics BLDC motor 11,000 RPM/12V/1.4A
- Ball shooter with optional vison AI
- Simple robotic arm
- Sensorless field-oriented control accelerated app

Summary and Next Steps

Kria SOM Portfolio: Available NOW

SOM-based Development Kits

Kria KR260

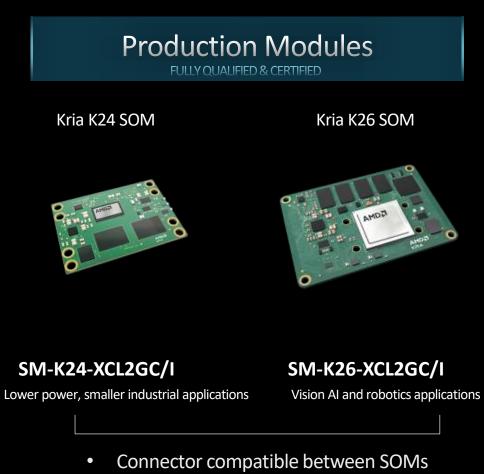
Robotics Starter Kit

Kria[™] KV260 Vision Al Starter Kit

SK-KV260-G

For vision and smart city applications with latest AI models

SK-KR260-G


For industrial systems including ROS2-based robotics applications

Kria KD240 Drives Starter Kit

SK-KD240-G

For deterministic motor control and DSP applications

• Offered in C-Grade and I-Grade

Resources Available

Collateral, Tutorials & Guides

- Overview White Paper
- E-book
- SOM & Starter Kit Product Briefs
- Unboxing Video
- Getting Started Web Page
- User Guides, Data Sheets, PSG
- Thermal & Power Design Guide
- Carrier Card Design Guide
- Carrier Card Schematics, 3D CAD and PCB Layout Files*

r H	
	_

Accelerated Applications

- Adaptable FOC
- Sensor-based Control
- Sensorless Control
- Motion Coordination
- PYNQ[™] DPU Overlays
- Partner Apps

1	
1	
1.1	_
1 I.a.	

AMD Wiki

- Pre-Built Images (Ubuntu)
- Firmware Updates
- PetaLinux Board Support Packages (BSPs)
- Vitis[™] Platform & Associated XDCs
- GitHub Repositories for Source Code

On-Demand Training Courses

- Getting Started with the Starter Kit**
- Deep Dive of Accelerated Applications**

together we advance_

Complete online experience from Education, to Purchase, to Design

* Carrier card refers to the Drives Starter Kit carrier card

Key Takeaways

Expanding our Kria[™] SOM Portfolio with New Power-Efficient K24 SOM

Pre-built Motor Control and DSP Applications for Developers without FPGA Expertise

Get Orders in Now for the Kria KD240 Drives Starter Kit to Get Started and K24 SOM for Production

Docs, Tools, and Starter Kits Available to Order from AMD.com

Simplify DSP Development with a Scalable, Power-Efficient SOM

DISCLAIMER AND ATTRIBUTIONS

DISCLAIMER

Timelines, roadmaps, and/or product release dates shown in these slides are plans only and subject to change.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD's products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

©2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Kria, PYNQ, UltraScale+, Virtex, Vitis, Vivado, Zynq, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. Ubuntu and the Ubuntu logo are registered trademarks of Canonical Ltd. Python and the Python logo are trademarks of the Python Software Foundation. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Backup

Comparing Kria[™] K24 vs. K26 SOM

CONNECTOR COMPATIBLE

Cost-optimized SOM for lower power, smaller form-factor & cost sensitive industrial applications

Mid-range SOM for Vision AI and Robotics applications requiring higher performance per watt

together we advance_

	K24 SOM			K26 SOM
SILICON (SYS LOGIC CELLS)	XCK24 InFO (154K)		SILICON	XCK26 (256K)
SOM I/O ACCESS	1x 240-Pin Connector, 1x 40-Pin Connector		SOM I/O	2x 240-Pin Connectors
FORM FACTOR	60 x 42mm		46% SMALL	60 x 77mm
MEMORY	2GB LPDDR4 ¹ , 32 GB		DDR, eMMC	4GB DDR4, 16 GB
POWER ²	2.5W		51% LESS	5.1W
STARTER KITS	KD240 DRIVES		DEV KITS	KV260 VISION AI, KR260 ROBOTICS

¹ ECC support available on K24 SOM I-grade

² Measured power while loading application specific bitstream on the SOM-based starter kit

Comparing Kria[™] Starter Kits

For mainstream vision AI camera & smart city applications

For high-performance industrial systems including ROS 2-based robotics applications

For deterministic motor control and DSP applications

	KV260 VISION AI	KR260 ROBOTICS	KD240 DRIVES	
NON-PROD SOM	K26	К26	K24	
SOM I/O ACCESS	1x 240-Pin Connector	2x 240-Pin Connectors	1x 240-Pin, 1x 40-Pin Connector	
NETWORK	1x Ethernet	4x Ethernet, SFP+	3x Ethernet	
KEY INTERFACES	MIPI Vision Sensors	SLVS-EC Vision Sensors	3-phase inverter & quadrature encoder	
EXPANSION	1x Pmod	4x Pmod	1x Pmod	
ACCESSORIES	Basic Accessory Pack	Sony IMX547 Camera Kits	Motor Accessory Pack	