

© Copyright 2013 Xilinx

Page 1 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

ZedBoard: Zynq-7000

AP SoC Concepts,

Tools, and Techniques

A Hands-On Guide to

Effective Embedded System

Design

ZedBoard (v14.4)

Notice of Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the select ion and use of Xilinx

products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all

faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING

BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR

PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory

of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials

(including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or

damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action

brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the

possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of

updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the

Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited

Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and

support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-

safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx

products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

© Copyright 2013 Xilinx

Page 2 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other

designated brands included herein are trademarks of Xilinx in the United States and other countries. All other

trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date Version Revision

08/20/2012 14.1 First version.

10/15/2012 14.3 Update for Xilinx ISE 14.3.

01/10/2013 14.3 Links to examples added in Chapter 6.

03/22/2013 14.4 Updated for Xilinx ISE 14.4 with revisions to the text and figures, adjusted formatting, fixed typos

and unified font sizes. Also made recommendations for an external serial terminal emulator to run

certain exercises. Added more examples and documentation links in Chapter 6.

© Copyright 2013 Xilinx

Page 3 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Table of Contents

Chapter 1 Introduction .. 6

1.1 About this Guide ... 6

1.1.1 Take a Test Drive! .. 7
1.1.2 Additional Documentation ... 7
1.1.3 Training Labs ... 7

1.2 How Zynq AP SoC and Xilinx software Simplify Embedded Processor Design 7
1.3 What You Need to Set Up Before Starting ... 9

1.3.1 Software Installation Requirements: ...10
1.3.2 Hardware Requirements for this Guide ...11

Chapter 2 Embedded System Design Using the Zynq Processing System ..12
2.1 Embedded System Construction ..14

2.1.1 Take a Test Drive! Creating a New Embedded Project With a Zynq Processing

System 14

2.1.2 Take a Test Drive! Exporting to SDK ..23

2.1.3 Take a Test Drive! Running the “Hello World” Application25
2.1.4 Additional Information ..30

Chapter 3 Embedded System Design Using the Zynq Processing System and Programmable Logic .32
3.1 Adding soft IP in the PL to interface with the Zynq PS ...32

3.1.1 Take a Test Drive! Check Functionality of IP instantiated in the PL34

3.1.2 Take a Test Drive! Working with SDK ..41
Chapter 4 Debugging with SDK and ChipScope Pro ..42

4.1 Take a Test Drive! Debugging with Software, Using SDK ..42

4.2 Take a Test Drive! Debugging Hardware Using ChipScope Software44
Chapter 5 Booting Linux and Application Debugging Using SDK ...48

5.1 Requirements ...48
5.2 Booting Linux on a ZedBoard ...49

5.2.1 Boot Methods ..49
5.2.2 Booting Linux from JTAG ..50

5.2.3 Take a Test Drive! Booting Linux in JTAG Mode ...51
5.2.4 Booting Linux from QSPI Flash ...53

5.2.5 Take a Test Drive! Booting Linux from QSPI Flash ..53
5.2.6 Booting Linux from the SD Card ..58

5.2.7 Take a Test Drive! Booting Linux from the SD Card ...58
5.3 Hello World Example ..59

5.3.1 Take a Test Drive! Running a “Hello World” Application.....................................59
5.4 Controlling LEDs and Switches in Linux Example ..66

5.4.1 Take a Test Drive! Controlling LEDs and Switches in a Linux Application66
Chapter 6 Further “How-to’s” and Examples ..77
Appendix A ...79

© Copyright 2013 Xilinx

Page 4 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Table of Figures

Figure 2-1: Design Flow for Zynq ...13
Figure 2-2: New Project Wizard Part Selection ...15
Figure 2-3: PlanAhead GUI ...16
Figure 2-4: Platform Studio dialog box ...17
Figure 2-5: Create New Project BSB Wizard ..18
Figure 2-6: Peripheral Configuration Wizard ..19
Figure 2-7:Processing System 7 in the Bus Interface tab ..20
Figure 2-8: System Assembly View of the Zynq Processing System Block Diagram21
Figure 2-9: Selecting ZedBoard Template ..22
Figure 2-10: Updated Zynq Block Diagram ..23
Figure 2-11: Address Map in SDK system.xml Tab ...24
Figure 2-12: ZedBoard Power switch and Jumper settings ..25
Figure 2-13:Serial Terminal Settings...26
Figure 2-14:Application Project Wizard ...27
Figure 2-15:Hello World from Available Templates ..28
Figure 2-16: Successful Build ...29
Figure 2-17:"Hello World" on the Serial Terminal ...30
Figure 3-1: Block Diagram ..33
Figure 3-2:Completed Port Connections ...36
Figure 3-3:Processing_system7_0 Expanded and M_AXI_GPO_ACLK Connected37
Figure 3-4:Interrupt Connection Dialog Box ..38
Figure 3-5:Timer Interrupt Connected on the PL side ...38
Figure 3-6:Connected chipscope_axi_monitor ..38
Figure 3-7: GPIO Port Not Connected to External Ports ...39
Figure 3-8: Design Rule Check Warnings ...39
Figure 3-9: system.ucf File Added ..40
Figure 3-10:Program FPGA Dialog Box ...42
Figure 4-1: Debug Perspective Suspended ..43
Figure 4-2: Trigger Setup Window, MON_AXI_ARVALID Setting ...45
Figure 4-3: Trigger Condition Dialog Box ..46
Figure 4-4:Waveform captured in Chipscope ..47
Figure 5-1: Linux Boot Process on the ZedBoard ...50
Figure 5-2:Jumper Settings to boot in JTAG mode ...51
Figure 5-3:Creating a Zynq QSPI Boot Image ..55
Figure 5-4: Serial Terminal Window showing QSPI programming ..57
Figure 5-5:Serial Terminal Window showing Linux Booting ...58
Figure 5-6:Jumper Settings to boot from SD Card ..58
Figure 5-7: New Project Selection ...60
Figure 5-8: Application Project ...61
Figure 5-9:Add An Empty Application ...62
Figure 5-10:Import .c file ..63
Figure 5-11: Select hello_world_linux.c ...64
Figure 5-12:Serial Teriminal Window showing Linux Booting ..65
Figure 5-13: Serial Terminal Window showing hello_world_linux running...66
Figure 5-14: New Project Wizard Part Selection ...67
Figure 5-15: PlanAhead GUI ...68
Figure 5-16: Platform Studio dialog box ...69
Figure 5-17:Create New Project BSB Wizard ...70
Figure 5-18: Peripheral Configuration Wizard ..71
Figure 5-19: New Project Selection ...73
Figure 5-20:Add An Empty Application ...74
Figure 5-21:Import .c file ..75

© Copyright 2013 Xilinx

Page 5 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

© Copyright 2013 Xilinx

Page 6 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Chapter 1
Introduction

1.1 About this Guide

This document provides an introduction to using the Xilinx® ISE® WebPACK

software to build a Zynq™-7000 All Programmable SoC (AP SoC) design. The

examples target the ZedBoard (http://www.zedboard.org) using ISE Design Suite

14.4.

Note: The Test Drives in this document were created using Microsoft Windows 7 64-bit operating

system. Other versions of Windows might provide varied results.

The Zynq-7000 family is the world's first All Programmable SoC. This innovative

class of product combines an industry-standard ARM® dual-core Cortex™-A9

MPCore™ processing system with Xilinx 28 nm unified programmable logic

architecture. This processor-centric architecture delivers a complete embedded

processing platform that offers developers ASIC levels of performance and power

consumption, the flexibility of an FPGA, and the ease of programmability of a

microprocessor.

This guide describes the design flow for developing a custom Zynq-7000 AP SoC

based embedded processing system using the Xilinx ISE WebPACK software tools.

It contains the following five chapters:

 Chapter 1, (this chapter) provides a general overview.

 Chapter 2, “Embedded System Design Using the Zynq Processing System”

describes the tool flow for the Zynq Processing System (PS) to create a simple

standalone "Hello World" application.

 Chapter 3, “Embedded System Design Using the Zynq Processing System and

Programmable Logic” describes how to create a system utilizing both the Zynq

PS as well as the Programmable Logic (PL).

 Chapter 4, “Debugging with SDK and ChipScope Pro” provides debugging

debugging techniques via software (using SDK Debug) and hardware (using the

ChipScope™ software)debugging tools.

 Chapter 5, “Booting Linux and Application Debugging using SDK” covers

programming of the non-volatile memories such as QSPI Flash and SD Card with the

Linux precompiled images, which are used for automatic Linux booting after

switching on the board.

http://www.zedboard.org/

© Copyright 2013 Xilinx

Page 7 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

 Chapter 6, “Further “How-to’s” and Examples” links the reader to online

resources available to the ZedBoard designer including design projects and

further documentation.

 Appendix A, “Application Software” describes details of the application needed

for the example design used in this guide.

1.1.1 Take a Test Drive!

The best way to learn a software tool is to use it, so this guide provides

opportunities for you to work with the tools under discussion. Procedures for sample

projects are given in the Test Drive sections, along with an explanation of what is

happening behind the scenes and why you need to do it.

Test Drives are indicated by the car icon, as shown beside the heading above.

1.1.2 Additional Documentation

For further information, refer to:

 Xilinx Zynq-7000 Documentation:

http://www.xilinx.com/support/documentation/zynq-7000.htm

 Xilinx Design Tools: Installation and Licensing Guide (UG798):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/iil.pdf

 Xilinx Design Tools: Release Notes Guide (UG631):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/irn.pdf

 Xilinx

Glossary:

http://www.xilinx.com/company/terms.htm

 Xilinx Support:

http://www.xilinx.com/support/

 ZedBoard.org:

http://www.zedboard.org

1.1.3 Training Labs

Some Test Drives have associated training labs that you can use for further practice

with the given tasks. When applicable, a description of the lab is provided at the end

of the Test Drive.

1.2 How Zynq AP SoC and Xilinx software Simplify Embedded
Processor Design

The Zynq-7000 All Programmable SoC reduces system complexity by offering a

dual core ARM Cortex-A9 processing system and hard peripherals coupled with

Xilinx 7-Series 28 nm programmable logic all integrated on a single SoC. It is the

http://www.xilinx.com/support/documentation/zynq-7000.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/iil.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/irn.pdf
http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support/
http://www.zedboard.org/

© Copyright 2013 Xilinx

Page 8 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

first of its kind in the market and has tremendous potential as a tightly integrated

system.

To simplify the design process, Xilinx offers several sets of tools. The ZedBoard kit

includes the ISE WebPACK software, and the appropriate device-locked ChipScope

Pro tools. ISE WebPACK includes the PlanAhead Design and Analysis tools,

Embedded Development Kit (EDK) for the Zynq XC7Z020 AP SoC, as well as a

limited version of the built-in simulator, ISim. The embedded processing component

of the ISE WebPACK tools includes Xilinx Platform Studio (XPS) as well as the

Software Development Kit (SDK). The Zynq Processing System (PS) may be used

without anything programmed in the Programmable Logic (PL). However, in order

to use any soft IP in the PL, or to route PS dedicated peripherals to device pins for

the PL, you have to program the PL.

With ISE Webpack you have all the Xilinx tools required to work with your

ZedBoard. It is a good idea to get to know the basic tool names, project file names,

and acronyms for these tools. You can find Xilinx software-specific terms in the

Xilinx Glossary:

http://www.xilinx.com/company/terms.htm

Xilinx ISE WebPACK

ISE WebPACK design software is the free, downloadable, fully featured front-to-back

FPGA design solution running under Linux, Windows XP, and Windows 7, supporting

the ZedBoard. As part of the ISE Design Suite version 14.4 – WebPACK supports

embedded processing design for the Zynq-7000 AP SoC.

The ISE WebPACK tools include PlanAhead, Xilinx Platform Studio and the Software

Development Kit, amongst others. The WebPACK DVD that is included with the kit may

have a different version, please use the corresponding CTT for that version or install ISE

14.4 via a web download. A complete description of ISE WebPACK is available via this

hyperlink: http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm

PlanAhead Design and Analysis Tools

PlanAhead software provides a central cockpit for design entry in RTL,

synthesis and verification. PlanAhead offers integration with XPS for

embedded processor design (including access to the Xilinx IP catalog), and

SDK to complete the embedded processor software design. Implementation is

achieved through integration with the ISE tool flow. The implementation

flow of your design may be centrally launched from the PlanAhead GUI.

 For more information on the embedded design process as it relates to

XPS, see the "Design Process Overview" in the Embedded System Tools

http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm
http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm

© Copyright 2013 Xilinx

Page 9 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Reference Manual (UG111):

http://www.xilinx.com/support/documentation/xilinx14_4/est_rm.pdf

Note: For this version of the Zynq development tools, direct simulation of

the Processing System is not available.

Xilinx Platform Studio

XPS is the development environment used for designing the hardware

portion of your embedded processor system. You can specify in XPS the

microprocessor, peripherals, and the interconnection of these components

along with their respective detailed configuration.. You can run XPS in batch

mode or using the GUI, which is demonstrated in this guide.

Software Development Kit

The SDK is an integrated development environment, complementary to XPS,

that is used for C/C++ embedded software application creation and

verification. SDK is built on the Eclipse open-source framework. For more

information about the Eclipse development environment, please refer to

http://www.eclipse.org.

Other Components of ISE WebPACK

Other components include:

 Hardware IP for the Xilinx embedded processors

 Drivers and libraries for the embedded software development

 GNU compiler and debugger for C/C++ software development targeting

the ARM Cortex-A9 MPCore in the Zynq Processing System

 Documentation

 Sample projects

1.3 What You Need to Set Up Before Starting

Before discussing the tools in depth, it would be a good idea to make sure they are

installed properly and that the environments you set up match those required for the

"Test Drive" sections of this guide.

http://www.xilinx.com/support/documentation/xilinx14_4/est_rm.pdf
http://www.eclipse.org/

© Copyright 2013 Xilinx

Page 10 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

1.3.1 Software Installation Requirements:

1. Xilinx ISE WebPACK software tools

This lab requires version 14.4 of the PlanAhead design tool, and Embedded software

tools (including XPS and SDK) as well as ISim (limited). It is recommended that you

download the single file ISE installation package via the Download Center on the

Xilinx website and choose the System Edition installation option during setup. The

ZedBoard license for the WebPACK edition is discussed and explained later. Apply

the Device Pack update.

2. Xilinx ChipScope Pro Tools

A version of the Xilinx ChipScope Pro tools that supports the ZedBoard is made

available with the kit. ChipScope Pro allows you to probe the internal signals of your

design much as you would with a logic analyzer. This document also covers insertion of

debug cores.

3. Software Licensing

Xilinx software uses FLEXnet licensing. A license is required for ISE WebPACK. A

general WebPACK license does not require a host ID and, therefore, can work on any

computer. However, the ChipScope Pro tools do require a Host ID.

The ZedBoard comes with a voucher entitling you to a special WebPACK license

configuration to run the exercises in this document. If you do not have the voucher, it is

highly recommended for you to generate the 30-Day evaluation license that entitles you

to full software functionalities and device support. Please keep in mind that the 30-Day

license is node locked and will expire after 30 days.

To obtain the special WebPACK license, run the Xilinx License Configuration Manager

(XLCM), which is automatically launched when the installation process concludes. When

XLCM starts, it prompts you to register via the Xilinx Licensing Center online through a

web browser. In the licensing center, enter the ZedBoard voucher’s alphanumeric code to

generate the special node locked license. The generated license will be e-mailed to you.

Save the e-mailed license to a convenient location on your hard drive. With XLCM open,

specify the location of the license file, XLCM then automatically places the WebPACK

license in the proper directory.

4. Serial Terminal Emulation

Certain test drives require the use of a serial terminal emulator external to the SDK. The

exercises have been tested with PuTTY and Tera Term although other terminal utilities

can be used as well. The settings for setting up a session can be found in Figure 2-13.

© Copyright 2013 Xilinx

Page 11 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

1.3.2 Hardware Requirements for this Guide

The ZedBoard is required to complete the tutorial. A second micro USB cable is

required to connect both the USB-JTAG and USB-UART on-board. Alternatively,

you can use the micro USB Type B adapter for a standard Type A connector cable

that is included with the ZedBoard.

© Copyright 2013 Xilinx

Page 12 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Chapter 2
Embedded System Design Using the Zynq
Processing System

Now that you've been introduced to the Xilinx software tools, you'll begin looking

at how to use it to develop an embedded system using the Zynq PS.

The Zynq AP SoC consists of an ARM Cortex A9 MPCore PS which includes

various dedicated peripherals as well as a configurable PL. This offering can be

used in three ways:

1. The Zynq PS can be used independently of the PL.

2. Soft IP may be added in the PL and connected to extend the functionality of the

PS. You can use this PS + PL combination to achieve complex and efficient

design on the SoC.

3. Logic in the PL can be designed to operate independently of the PS. However

the PS or JTAG must be used to program the PL.

The design flow is described in Figure 2-1: Design Flow for Zynq.

© Copyright 2013 Xilinx

Page 13 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 2-1: Design Flow for Zynq

1. The recommended design and implementation process begins with launching the

PlanAhead tools, which is the central cockpit from which design entry through

bitstream generation is completed.

2. From PlanAhead, select Add an Embedded Source to include the ARM Cortex-

A9 PS in the project. XPS is then automatically launched from PlanAhead.

Selection of the PS and optional addition of PL peripherals occur within XPS.

3. In XPS, configure settings to make the appropriate design decisions such as

selection/de-selection of dedicated PS I/O peripherals, memory configurations,

clock speeds, etc.

4. At this point, you may also optionally add soft IP from the IP catalog or create

your own customized IP. When finished, close XPS to return to PlanAhead.

5. Back in the PlanAhead environment, generate a top-level HDL wrapper for the

processing system.

6. Ensure that the appropriate PL related design constraints are defined as required

by the tools. If any signal coming to I/O pin is not defined then the tools will

generate an error during the bitstream generation. Also, do not include pin

constraints which are connected to the dedicated pins as the tools will generate the

error. These constraints would typically be useful to ensure that signals to general

purpose I/O such as the switches, LEDs, and Push Buttons on the ZedBoard are

11. Program bitstream & .elf into Zynq

PlanAhead

XPS

SDK

2. Add Embedded Source
(launch XPS)

5. Add Top-Level HDL

6. Add Constraints file

7. Generate Bitstream =>
.bit
8. Export hardware to SDK

3. Configure PS settings

4. Add IP
(exit XPS, back to

PlanAhead)

9. Specify hardware
built from PlanAhead
and XPS

10. Add Software
Project & Build => .elf

1. Launch PlanAhead

ZedBoard

Optional direct next step

© Copyright 2013 Xilinx

Page 14 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

routed appropriately. This is done via the creation/addition of a .ucf constraints

file in the PlanAhead project.

7. Generate the bitstream for configuring the logic in the PL if soft peripherals or

other HDL are included in the design, or if hard peripheral IO was routed through

the PL. At this stage, the hardware has been defined in <system.xml>, and if

necessary a bitstream <system.bit> has been generated. At this point, the

bitstream could be programmed into the FPGA; or it could be done from within

SDK.

8. Now that the hardware portion of the embedded system design has been built,

export it to SDK to create the software design. (A convenient method to ensure

that the hardware for this design is automatically integrated with the software

portion is achieved by Exporting the Hardware from PlanAhead to SDK.)

9. In SDK, add a software project to associate with the hardware design exported

from PlanAhead.

10. Within SDK, for a standalone application (no operating system) create a Board

Support Package (BSP) based on the hardware platform and then develop your

user application. Once compiled, a <designname.elf> is generated.

11. The combination of the optional bitstream and the .elf file together programs the

hardware and the software functionality into the Zynq device on your ZedBoard.

2.1 Embedded System Construction

Creation of a Zynq system design involves configuring the PS to select appropriate

peripherals. As long as the selected PS hard peripherals use Multiplexed IO (MIO)

connections , and no additional logic or IP is built or routed through the PL, no

bitstream is required. This chapter guides you through creating one such design,

where only the PS is used.

2.1.1 Take a Test Drive! Creating a New Embedded Project With a
Zynq Processing System

For this test drive, you start the ISE PlanAhead design and analysis tool and create a

project with an embedded processor system as the top level.

Start the PlanAhead tool,

1. Select Create New Project to open the New Project wizard.

2. Use the information in the table below to make your selections in the wizard

screens.

© Copyright 2013 Xilinx

Page 15 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Wizard Screen System Property Setting or Command to Use

Project Name Project name Specify the project name.

Project location Specify the directory in which to store

the project files.

Create Project Subdirectory Leave this checked.

Project Type Specify the type of sources for

your design. You can start with

RTL or a synthesized EDIF

Use the default selection, RTL Project.

Add Sources Do not make any changes on this screen.

Add Existing IP Do not make any changes on this screen.

Add Constraints Do not make any changes on this screen.

Default Part Specify Select Boards.

Board Select ZedBoard Zynq Evaluation and

Development Kit

New Project Summary Project summary Review the project summary before

clicking Finish to create the project.

Figure 2-2: New Project Wizard Part Selection

© Copyright 2013 Xilinx

Page 16 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

When you click Finish, the New Project wizard closes and the project you just

created opens in the PlanAhead design tool.

Figure 2-3: PlanAhead GUI

You'll now use the Add Sources wizard to create an embedded processor project.

1. Click Add Sources in the Project Manager.

The Add Sources wizard opens.

2. Select the Add or Create Embedded Sources option and click Next.

3. In the Add or Create Embedded Source window, click Create Sub-Design.

4. Type a name for the module and click OK. For this example, use the name:

system.

5. Click Finish.

6. The module you created displays in the sources list.

The PlanAhead design tool creates your embedded design source project. It

recognizes that you have an embedded processor system and starts XPS.

© Copyright 2013 Xilinx

Page 17 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Continuing Your Design in XPS

You can design a new embedded system in XPS using either of two methods:

 Using the Base System Builder (BSB) Wizard

In the BSB Wizard, you can select and configure and add default peripherals to the

fabric. Xilinx recommends using the BSB wizard to create the foundation for any

new embedded design project.

 Creating a Blank Project

With this option, you must manually add Processing System 7 to your design and

configure the I/O interface.

2.1.1.1 Designing a New Embedded System Using the BSB Wizard

1. The dialog box opens, and asks if you want to create a Base System using the

BSB Wizard. Select Yes.

Figure 2-4: Platform Studio dialog box

The first window of the BSB asks you to elect whether to create an AXI-based or

PLB-based system.

© Copyright 2013 Xilinx

Page 18 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 2-5: Create New Project BSB Wizard

7. Select AXI System and click OK.

8. In the Base System Builder wizard, create a project using the settings described

in the table. Where a setting or command has not been specified, accept the

default values.

© Copyright 2013 Xilinx

Page 19 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Wizard Screen System Property Setting or Command to Use

Board and System

Selection

Board Use the default option to create a system

for ZedBoard Zynq Evaluation and

Development Kit.

Note: This is pre-populated because you

selected this board in the PlanAhead tool.

Board Configuration This information is pre-populated based

on your board selection..

Select a System Zynq Procesing System 7

Peripheral

Configuration

Select and Configure Peripherals Remove all peripherals from the list by

selecting each one and clicking Remove

or clicking the Select All button followed

by clicking the Remove button.

Figure 2-6: Peripheral Configuration Wizard

© Copyright 2013 Xilinx

Page 20 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

9. Click Finish.

10. Close the XPS window since we do not want to update, remove or add

peripherals. The active PlanAhead tool session updates itself with the project

settings.

2.1.1.2 Designing a New Embedded System Using a Blank Project

If you have already created a default embedded system using the BSB wizard, skip this

section and move on to the following section, Exporting to SDK.

1. In the dialog box that opens to ask if you want to create a Base System using the

BSB wizard, click No.

A dialog box opens, asking if you want to add one processing_system7 4.0.2.a

instance to your design.

2. Click Yes to add the processor instance.

3. Click the Bus Interfaces tab. Notice that processing_system7 was added.

Figure 2-7:Processing System 7 in the Bus Interface tab

4. Click the Zynq tab in the System Assembly View to open the Zynq Processing

System block diagram.

© Copyright 2013 Xilinx

Page 21 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 2-8: System Assembly View of the Zynq Processing System Block Diagram

Review the contents of the block diagram. The green colored blocks in the Zynq

Processing System diagram are items that are configurable. You can click a green

block to open the coordinating configuration window.

5. Click the Import Zynq Configurations button .

The Import Zynq Configurations dialog box opens.

6. Select a configuration template file for ZedBoard. The template selected by

default is the one in the installation path on your local machine that corresponds

to the ZedBoard.

© Copyright 2013 Xilinx

Page 22 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 2-9: Selecting ZedBoard Template

7. Click OK.

8. In the confirmation window that opens to verify that the Zynq MIO

Configuration and Design will be updated, click Yes.

9. Note the change to the Zynq block diagram. The I/O Peripherals become active.

© Copyright 2013 Xilinx

Page 23 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 2-10: Updated Zynq Block Diagram

10. In the block diagram, click the green I/O Peripherals box.

Many peripherals are now enabled in the Processing System with some MIO pins

assigned to them per the ZedBoard layout. For example, UART1 is enabled and

UART0 is disabled. This is because UART1 is connected to the USB - UART

connector through UART to the USB converter chip on the ZedBoard.

11. Close the Zynq PS MIO Configurations window.

12. Close the XPS window. The active PlanAhead tool session updates with the

project settings.

2.1.2 Take a Test Drive! Exporting to SDK

In this test drive, you will launch SDK from the PlanAhead tool.

1. Under Design Sources in the Sources pane, select and right-click system

(system.xmp) and select Create Top HDL.PlanAhead defaults to Verilog. One

can choose VHDL if desired. For this test drive, the default setting will be kept .

PlanAhead generates the system_stub.v top-level module for the design.

2. In the PlanAhead tool, Select File > Export > Export Hardware for SDK.

The Export Hardware dialog box opens. By default, the Export Hardware check

box is checked.

3. Check the Launch SDK check box. Leave everything else as default.

4. Click OK; SDK opens.

© Copyright 2013 Xilinx

Page 24 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Notice that when SDK launches, the hardware description file is automatically read

in. The system.xml tab shows the address map for the entire Processing System.

Figure 2-11: Address Map in SDK system.xml Tab

What Just Happened?

The PlanAhead design tool exported the Hardware Platform Specification for your

design (system.xml in this example) to SDK. In addition to system.xml, there are

four more files relevant to SDK. They are ps7_init.c, ps7_init.h, ps7_init.tcl, and

ps7_init.html.

The system.xml file opens by default when SDK is launched. The address map of

your system read from this file is shown by default in the SDK window.

The ps7_init.c and ps7_init.h files contain the initialization code for the Zynq

Processing System and initialization settings for DDR, clocks, plls, and MIOs. SDK

uses these settings when initializing the processing system so that applications can

be run on top of the processing system.

What's Next?

Now you can start developing the software for your project using SDK. The next

sections help you create a software application for your hardware platform.

© Copyright 2013 Xilinx

Page 25 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

2.1.3 Take a Test Drive! Running the “Hello World” Application

1. Connect the 12V AC/DC converter power cable to the ZedBoard barrel jack.

2. Connect a USB micro cable between the Windows Host machine and the

ZedBoard JTAG (J17).

3. Connect a USB micro cable to the USB UART connector (J14) on the ZedBoard

with the Windows Host machine. This is used for USB to serial transfer.

4. Power on the board using the switch indicated in Figure 2-12: ZedBoard Power

switch and Jumper settings.

If this is your first time starting up the ZedBoard with the USB UART connected to

your Windows PC, you may need to install the Cypress USB-to-UART device drivers.

Please refer to the Cypress USB-to-UART Setup Guide on ZedBoard.org for more

information:

http://www.zedboard.org/documentation

IMPORTANT: Ensure that jumpers JP7 to JP11 are set as shown in the figure for

the JTAG configuration mode.

Figure 2-12: ZedBoard Power switch and Jumper settings

5. Open SDK in case it is not already open.

http://www.zedboard.org/documentation

© Copyright 2013 Xilinx

Page 26 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

6. Open a serial communication utility for the COM port assigned on your

system.

Note: The default configuration for Zynq Processing System is: Baud rate

115200; 8 bit; Parity: none; Stop: 1 bit; Flow control: none. As mentioned in the

Software Requirements section, third party serial terminal emulators can be used

in place of the SDK terminal and is required for certain test drives.

To open a serial communication terminal in SDK:

Select Window > Show view > Terminal and click in the console view area.

Configure it with the parameters as shown below (replacing COM7 with the

appropriate COM port number, verify using Control Panel > Device Manager).

Figure 2-13:Serial Terminal Settings

7. In SDK, select File > New > Application Project.

This will open the New Project Wizard.

8. Use the information in the table below to make your selections on the wizard

screens.

© Copyright 2013 Xilinx

Page 27 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Wizard Screen System Property Setting or Command to USe

Application Project Project name Hello_world

Use default location Check this option

Hardware Platform system_hw_platform

Processor ps7_cortexa9_0

OS platform Standalone

Language C

Board Support Package Create New : Hello_world_bsp

Click Next

Templates Available Templates Hello World

Figure 2-14:Application Project Wizard

© Copyright 2013 Xilinx

Page 28 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 2-15:Hello World from Available Templates

9. When you click Finish, the New Project wizard closes.

By doing so, the Hello_world application project and Hello_world_bsp BSP

project get created under the project explorer. Both the Hello_world application,

and its BSP are compiled automatically and the .elf file is generated. You can

open the newly generated helloworld.c file to view the C code in the

Hello_World application under the src folder. Notice it looks like every other

Hello World program.

10. Watch the messages in the Console window. When the project is successfully

built, you will see Finished building: Hello_world.elf.size.

© Copyright 2013 Xilinx

Page 29 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 2-16: Successful Build

11. The application and its BSP are both compiled and the .elf file is generated.

12. Right-click Hello_world and select Run as > Run Configurations.

13. Right-click Xilinx C/C++ ELF and click New.

14. The new run configuration is created named Hello_world Debug.

The configurations associated with the application are pre-populated in the Main

tab of the launch configurations.

15. Click the Device Initialization tab in the launch configurations and check the

settings here.

Notice that there is a configuration path to the initialization TCL file (

ps7_init.tcl). This is the file that was generated when you imported your design

into SDK; it contains the initialization information for the processing system

when using JTAG.

16. The STDIO Connection tab is available in the launch configurations settings.

You can use this to have your STDIO connected to the console. Note that both

STDIO and Terminal connections are not permitted to use the same COM

port. We will not use this now because we have already launched a serial

communication utility. There are more options in launch configurations but

we will focus on them later.

© Copyright 2013 Xilinx

Page 30 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

17. Click Run.

18. "Hello World" appears on the serial communication terminal.

Figure 2-17:"Hello World" on the Serial Terminal

19. Close SDK.

Note: There was no bitstream download required for the above software application

on the ZedBoard. The ARM Cortex-A9 dual core is already present on the board.

Basic initialization of this system to run a simple application is done by the device

initialization TCL script.

2.1.4 Additional Information

Board Support Package

The Board Support Package (BSP) is the support code for a given hardware platform

or board that initializes the board at power up for software applications to execute

on the platform. It can be specific to some operating systems with bootloader and

device drivers.

Standalone OS

Standalone applications do not utilize an Operating System (OS). They are

sometimes also referred to as bare-metal applications. Standalone applications have

access to basic processor features such as caches, interrupts, exceptions as well as

© Copyright 2013 Xilinx

Page 31 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

other simple features specific to the processor. These basic features include standard

input/output, profiling, abort, and exit. It is a single threaded semi-hosted

environment.

The application you ran in this chapter was created on top of a BSP built for the

ZedBoard.

© Copyright 2013 Xilinx

Page 32 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Chapter 3
Embedded System Design Using the Zynq
Processing System and Programmable
Logic

One of the unique features of using the Zynq AP SoC as an embedded design

platform is in using the available PL in addition to the Zynq PS for its ARM Cortex-

A9 MPCore processing system.

In this chapter we will be creating a design with:

 PL-based AXI GPIO and AXI Timer with interrupt from the PL to PS section

 ChipScope IP instantiated in the PL

 Zynq PS GPIO pin connected through the PL pins routed via the Extended MIO

(EMIO) interface

The flow of this chapter is similar to that in Chapter 2. If you have skipped that

chapter, you might want to look at it because we will refer to it many times in this

chapter.

3.1 Adding soft IP in the PL to interface with the Zynq PS

Complex soft peripherals can be added into the PL to be tightly coupled with the

Zynq PS. This section covers a simple example with AXI GPIO, AXI Timer with

interrupt, PS section GPIO pin connected to a PL side pin via the EMIO interface,

and ChipScope instantiation for proof of concept.

The block diagram for the system is as shown in Figure 3-1: Block Diagram.

© Copyright 2013 Xilinx

Page 33 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

X-Ref Target - Figure 3‑1

Figure 3-1: Block Diagram

This system covers the following connections:

 The PL-side AXI GPIO has only a 1 bit channel and it is connected to the push-

button 'BTNU' on the ZedBoard

 The PS section GPIO also has a 1 bit interface routed to PL pin via the EMIO

interface and connected to the push-button 'BTNR' on the board

 In the PS section another 1 bit GPIO is connected to the LED 'LD9' on board

which is on the MIO port

 An AXI timer interrupt is connected from PL to PS section interrupt

controller. The timer starts when the user presses any of the selected push

buttons on board and toggles the LED 'LD9' on board

You will write application software, which takes input from the user to select the

push button on the board and waits for the user to press that particular push button.

When the push button is pressed, the timer starts automatically, turns OFF the LED

and waits for the timer interrupt to happen. After the Timer Interrupts, the LED

switches ON and execution starts again, and it waits for a valid selection from the

user.

© Copyright 2013 Xilinx

Page 34 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

You will add the ChipScope Integrated Controller (ICON) and AXI Monitor IPs to

the design so that in a later section you can learn how to debug hardware using the

AXI monitor.

The sections of Chapter 2 are valid for this design flow also. You’ll use the system

created in that chapter and pick up the procedure following 2.1.1 Take a Test

Drive! Creating a New Embedded Project With a Zynq Processing System.

3.1.1 Take a Test Drive! Check Functionality of IP instantiated in the
PL

In this test drive, you’ll check the functionality of the AXI GPIO, AXI Timer with

interrupt instantiated in PL and EMIO interface.

1. In the PlanAhead tool Sources pane, invoke XPS by double-clicking system_i-

system(system.xmp).

This is the embedded source you created in section 2.1.1.

2. In the XPS System Assembly View, click the Bus Interfaces tab.

3. From the IP catalog, expand General Purpose IO and double-click AXI

General Purpose IO to add it.

A message appears asking if you want to add the axi_gpio 1.01.b IP instance to

your design.

4. Click Yes.

The configuration window for GPIO opens.

5. Expand Channel 1 to view configuration parameters for channel 1.

6. Notice GPIO Data Channel Width with value 32. Change it to 1 as your

design needs only one bit of input to work. Leave all other parameters as

they are.

7. Click OK.

A message window opens with the message "axi_gpio IP with version number

1.01.b is instantiated with name axi_gpio_0". It will ask you to determine to

which processor to connect. Remember you are designing with a dual core ARM

processor. The message also says XPS will make the Bus Interface Connection,

assign the address, and make IO ports external.

The default choice of processor is "processing_system7_0". Do not change this.

8. Click OK.

There are a few connections that are not done automatically and must be done

manually.

© Copyright 2013 Xilinx

Page 35 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Note: The AXI interconnect automatically gets instantiated between the PL IPs

and the PS Section’s Interconnect. In this example, AXI GPIO is connected to

PS through AXI interconnect.

9. In the IP Catalog, expand DMA and Timer and double-click the AXI

Timer/Counter IP to add it.

A dialog box appears asking if you want to add the axi_timer_1.03.a IP instance

to your design.

10. Click Yes.

The configuration window for axi_timer_1.03.a opens. Leave all parameters as

they are.

11. Click OK.

A message window opens with the message "axi_timer IP with version number

1.03.a is instantiated with name axi_timer_0." It will ask you to determine to

which processor to connect. Remember you are designing with a dual core ARM

processor. The message also says XPS will make the Bus Interface Connection,

assign the address, and make IO ports external.

The default choice of processor is "processing_system7_0". Do not change this.

12. Click OK.

You’ll connect the AXI timer’s Interrupt port to the PS section’s interrupt

manually in this section.

13. In the IP Catalog, expand Debug and add two IPs to the design: ChipScope

AXI Monitor and ChipScope Integrated Controller. Do not make changes

to the configuration of either IP.

14. Click the Ports tab, which lists the IPs and their ports. Expand

axi_interconnect_1, axi_gpio_0, axi_timer_0, chipscope_axi_monitor_0, and

chipscope_icon_0.

15. Review the following IP connections. If any of these aren’t already

connected, connect them now.

© Copyright 2013 Xilinx

Page 36 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

IP Port Connection

axi_interconnect_1 INTERCONNECT_ACLK processing_system7_0 : FCLK_CLK0

INTERCONNECT_ARESETN processing_system7_0::FCLK_RESET0_N

axi_gpio_0 (BUS_IF) S_AXI::S_AXI_ACLK processing_system7_0 : FCLK_CLK0

(IO_IF) gpio_0::GPIO_IO External Ports

::axi_gpio_0_GPIO_IO_pin

axi_timer_0 (BUS_IF)

S_AXI_::S_AXI_ACLK

processing_system7_0: FCLK_CLK0

Chipscope_axi_monitor_0 CHIPSCOPE_ICON_CONTROL chipscope_icon_0 ::control0

(BUS_IF) MON_AXI::

MON_AXI_ACLK

processing_system7_0: FCLK_CLK0

Chipscope_icon_0 Control0 Chipscope_axi_monitor0::CHIPSCOPE_I

CON_CONTROL

Your Ports tab should be similar to Figure 3-2: Completed Port Connections.

Figure 3-2:Completed Port Connections

© Copyright 2013 Xilinx

Page 37 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

16. Collapse all IPs and expand processing_system7_0. If the following port

connection is not made, do it now. It should look like Figure 3-

3:Processing_system7_0 Expanded and M_AXI_GPO_ACLK Connected.

IP Port Connection

Processing_system7_0
(BUS_IF) M_AXI_GP0::

M_AXI_GPO_ACLK
processing_system7_0 :: FCLK_CLK0

Figure 3-3:Processing_system7_0 Expanded and M_AXI_GPO_ACLK Connected

17. Connect the Timer interrupt on the PL side to the PS side interrupt controller

by doing the following:

a. In the Connected Port column, click L to H:No Connection of the

IRQ_F2P port of the Processing_system_7_0 instance.

The Interrupt Connection dialog box opens.

© Copyright 2013 Xilinx

Page 38 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

b. In the Unconnected Interrupts list, select axi_timer_0 and click the

right arrow button to move it to the Connected Interrupts list. The

figure displays the axi_timer_0 interrupt instance connected with

Interrupt ID 91.

Figure 3-4:Interrupt Connection Dialog Box

c. Click OK.

XPS connects the timer interrupt on the Programmable Logic side to the PS

section interrupt controller.

 Figure 3-5:Timer Interrupt Connected on the PL side

18. Click the Bus Interfaces tab and expand chipscope_axi_monitor_0.

19. In the Bus Name column, click No Connection. Using the drop-down list

that appears, connect chipscope_axi_monitor to axi_gpio_0.S_AXI.

By making this connection, you can monitor any type of AXI-related

transactions on the axi_gpio_0 slave AXI bus using the ChipScope Analyzer

tool.

Figure 3-6:Connected chipscope_axi_monitor

© Copyright 2013 Xilinx

Page 39 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

20. Route the PS section GPIO to the PL side I/O pad using the EMIO interface

by doing the following:

a. In the XPS System Assembly View, click the Zynq tab.

b. Click I/O Peripherals box to open the Zynq PS Configuration

dialog box.

c. In the Zynq PS Configuration tab, expand the GPIO item.

d. Click on the checkbox to select the EMIO GPIO (Width) option box.

The Width of GPIO on EMIO interface setting is enabled on the next

row. The default setting is 64.

e. Change the GPIO width to 1 in the drop-down menu. Click the Close

button to close the window and return to the System Assembly View.

f. In the System Assembly View, click the Ports tab and expand

processing_system7_0. You can see that the GPIO port is not

connected to an external port.

Figure 3-7: GPIO Port Not Connected to External Ports

21. Expand (IO_IF)GPIO_0 and select GPIO

22. Click the drop-down arrow in the Connected Port column and select

External Ports. Make a connection to processing_system7_0_GPIO_pin.

Making this connection allows you to assign the PL section pin location to the

PS GPIO in the user constraint file (UCF) later in this chapter.

23. Run Project > Design Rule Check.

Figure 3-8: Design Rule Check Warnings

24. Close XPS. The PlanAhead design tool window becomes active again.

25. In Design Sources, click on your XMP file, then right-click it and select

Create Top HDL. The PlanAhead tool updates the system_stub.v file.

26. In the Project Manager list of the Flow Navigator, click Add Sources.

27. In the dialog box that opens, select Add or Create Constraints, then click

Next.

© Copyright 2013 Xilinx

Page 40 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

28. Click Create File. In the Create Constraints File dialog box that opens, name

the file system and click OK.

29. Click Finish.

30. Expand the Constraints folder in the Sources window. Notice that the blank

file system.ucf was added inside constrs_1.Double-click system.ucf to open

it in the editor.

Figure 3-9: system.ucf File Added

31. Type the following text in the UCF file:

Connect to Push Button "BTNU"

NET axi_gpio_0_GPIO_IO_pin IOSTANDARD=LVCMOS25 | LOC=T18;

Connect to Push Button "BTNR"

NET processing_system7_0_GPIO_pin IOSTANDARD=LVCMOS25 |

LOC=R18;

The following settings are made:

 The LOC constraint for NET “axi_gpio_0_IO_pin” connects the AXI

GPIO pin to the T18 pin of the PL section and physically connects it to

the BTNU push button on the board.

 The LOC constraint for NET “processing_system7_0 GPIO pin” connects

the PS section GPIO to the R18 pin of the PL section and physically

connects it to the BTNR push button on the board.

 The IOSTANDARD=LVCMOS25 constraint sets both pins to LVCMOS

2.5V I/O standard.

32. Save all modified files.

33. In the Program and Debug list in the Flow Navigator, click Generate

Bitstream.

Note that a dialog box will appear to warn you that synthesis is not run on

the updated files, click Yes to run synthesis. Generating the bitstream may

invoke the entire implementation process after synthesis, click yes to run

© Copyright 2013 Xilinx

Page 41 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

implementation as well when prompted. This may take a while. During this

time, you should pay attention to the console messages.

34. After the Bitstream generation completes select Open Implemented Design

in the dialog box and click OK. This allows you to get a graphical overview

of the PL resource usage and routing. Ignore any critical warnings that

appear. Export the hardware (make sure that you enable the “Include

Bitstream” option) and Launch SDK as described in Chapter 2. For this

design, since there is a bitstream generated for the PL, this will also be

exported to SDK.

3.1.2 Take a Test Drive! Working with SDK

SDK launches with the "Hello World" project you created with the Standalone PS in

Chapter 2.

Note: You should use an external terminal emulator program (PuTTY or Tera Term)

in place of the SDK Terminal utility due to a compatibility issue between the

ZedBoard and the SDK terminal. Please make sure that the terminal emulator

program uses the recommended connection settings from Figure 2-13.

1. Select Project > Clean to clean and build the project again.

2. Open the helloworld.c file and modify the application software code. Refer to

Appendix A, Application Software for the application software details.

3. Connect and power-on the board.

4. Open the serial communication utility with baud rate set to 115200.

5. Because you have a bitstream for the PL, you must download the bitstream. To

do this, select Xilinx Tools > Program FPGA. The Program FPGA dialog box,

shown below, opens. It displays the bitstream exported from PlanAhead. Please

make sure the bitstream path points to your current project.

© Copyright 2013 Xilinx

Page 42 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 3-10:Program FPGA Dialog Box

6. Click Program to configure the PL with the bitstream. The Blue DONE LED

(LD12) will light up.

7. Run the application similar to the steps in Take a Test Drive! Running the

“Hello World” Application.

8. In the system, the AXI GPIO pin is connected to push button BTNU on the

board, and the PS section GPIO pin is connected to push button BTNR on the

board via an EMIO interface.

9. Follow the instructions shown on the serial terminal to run the application.

Chapter 4 Debugging with SDK and
ChipScope Pro

This chapter describes two types of debug possibilities with the design flow you’ve

already been working with. The first option is debugging with software using SDK.

The second option is hardware debug supported by the ChipScope software.

4.1 Take a Test Drive! Debugging with Software, Using
SDK

First you will try debugging with software using SDK. This step assumes the PL is

still configured from the previous chapter.

1. In the C/C++ Perspective, right-click on the Hello_world Project and select

Debug As > Debug Configurations. Check that settings are correct for your

debug operation.

2. Click Debug.

© Copyright 2013 Xilinx

Page 43 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

3. A dialog box appears with a question about the reset properties of your

system.

4. Click OK.

Another dialog box appears to notify you that this kind of launch is configured

to open the Debug perspective when it suspends.

5. Click Yes. The Debug Perspective opens.

Figure 4-1: Debug Perspective Suspended

Note: The address shown on this page might be different from the addresses

shown on your system.

The processor is currently sitting at the beginning of main() with program

execution suspended at line 0x001003c8. You can confirm this information with

the Disassembly view, which shows the assembly-level program execution also

suspended at 0x001003c8.

Note: If the disassembly view is not visible, select Window > Show view >

Disassembly.

The helloworld.c window also shows execution suspended at the first executable

line of C code. Select the Registers view to confirm that the program counter, pc

register, contains 0x00100608.

Note: If the Registers window is not visible, select Window > Show View >

Registers.

6. Double-click in the margin of the helloworld.c window next to the line of

code that reads init_platform (). This sets a breakpoint at init_platform (). To

confirm the breakpoint, review the Breakpoints window.

© Copyright 2013 Xilinx

Page 44 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

If the Breakpoints window is not visible, select Window > Show View >

Breakpoints.

7. Select Run > Resume to resume running the program to the breakpoint.

Program execution stops at the line of code that includes init_platform (). The

Disassembly and Debug windows both show program execution stopped at

0x001014c0.

8. Select Run > Step Into to step into the init_platform () routine.

Program execution suspends at location 0x00101810. The call stack is now two

levels deep.

9. Select Run > Resume again to run the program to conclusion by hitting any

key to end the application in the terminal window.

When the program completes running, the Debug window shows that the program is

suspended in a routine called exit. This happens when you are running under control

of the debugger.

10. Re-run your code several times. Experiment with single-stepping, examining

memory, changing breakpoints, modifying code, and adding print statements.

Try adding and moving views.

11. Close SDK.

4.2 Take a Test Drive! Debugging Hardware Using
ChipScope Software

Next you will try debugging hardware using the ChipScope Analyzer software using

the same application you created in 3.1.2 Take a Test Drive! Working with SDK.

1. Re-download the bitstream and application on the ZedBoard.

Note: You will need an external terminal emulator of your choice with the serial

connection set to the aforementioned settings in this document before running the

C/C++ application. This exercise will not be using the built in terminal emulator in

SDK but will require user inputs via the keyboard.

2. Run the application and close the SDK.

3. Open ChipScope Pro Analyzer. It is preferred that you launch from within

PlanAhead, although it is also launchable as an independent program from the

Windows Start Menu.

4. Click the Open/Search JTAG Cable button .

5. Click OK after ChipScope Pro Analyzer identifies the JTAG chain. You should

see two devices identified the ARM_DAP (MyDevice0) and the XC7Z020

(MyDevice1).

© Copyright 2013 Xilinx

Page 45 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

6. Import a *.cdc file in ChipScope and by doing the following:

a. Select Dev 1 Mydevice1(XC7Z020).

b. Select File > Import.

c. Click Select New File and select the chipscope_axi_monitor_0.cdc file from

<project_path>\<project_name>.srcs\sources_1\edk\system\implementati

on\chipscope_axi_monitor_0_wrapper.

d. Click OK.

7. Set a trigger at the “ARVALID” signal by doing the following.

a. Expand the Trigger Setup window.

b. Double-click M1:MON_AXI_ARADDRCONTROL. For the

M1:MON_AXI_ARADDRCONTROL unit, change the value of

axi_gpio_0.S_AXI/MON_AXI_ARVALID from the default of X to 1. With

this setting, any positive transaction on this signal triggers the analyzer and

waveform will be displayed.

Figure 4-2: Trigger Setup Window, MON_AXI_ARVALID Setting

c. In the Trig section of the Trigger Setup window, click M0 in the Trigger

Condition Equation column.

The Trigger Condition dialog box opens.

d. In the Enable column, unselect M0 and select M1.

© Copyright 2013 Xilinx

Page 46 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

The trigger channel changes from M0 to M1; the ARVALID signal is on the M1

channel.

Figure 4-3: Trigger Condition Dialog Box

Click OK.

8. In the Capture section of the Trigger Setup window, change the Position setting

from 0 to 512.

The Trigger Point moves to the middle of the waveform as the sample depth

changes to 1024.

9. Click the Run button .

ChipScope Analyzer waits for the trigger event.

10. Follow the instructions on the serial terminal to select the AXI GPIO use case.

This triggers the waveform.

© Copyright 2013 Xilinx

Page 47 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 4-4:Waveform captured in Chipscope

11. Exit the program, close the ChipScope Analyzer without saving the project, and

close the SDK.

© Copyright 2013 Xilinx

Page 48 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Chapter 5 Booting Linux and Application
Debugging Using SDK

This chapter describes the steps to boot the Linux OS on the Zynq-7000 AP SoC

ZedBoard. It covers programming of the following non-volatile memories with the

Linux precompiled images, which are used for automatic Linux booting after switching

on the board:

 On-board QSPI Flash

 SD card

This chapter also describes using the SDK remote debugging feature to debug Linux

applications running on the ZedBoard. The SDK tool software runs on the Windows host

machine. For application debugging, SDK establishes an Ethernet connection to the

target board that is already running the Linux OS.

5.1 Requirements

The target hardware platform is the ZedBoard. The host platform is a Windows

machine running the ISE Design Suite Tools 14.4 WebPACK.

Note: The U-Boot universal bootloader is required for the tutorials in this chapter.

This is included in the precompiled images supplied with this document.

The zipfile includes these files (in addition to others used in other sections):

 BOOT.bin: Binary image containing the FSBL and U-Boot images produced by

bootgen

 bootimage.bif: The file to control bootgen during the creation of BOOT.BIN

 devicetree.dtb: Device tree binary large object (blob) used by Linux, loaded into

memory by U-Boot. Note, the devicetree.dtb will not work if the hardware design

has different peripherals specified

 ramdisk8M.image.gz: Ramdisk image used by Linux, loaded into memory by U-

Boot

 README.txt: Description of the release

 u-boot.elf: U-Boot file used to create the BOOT.BIN image

 zImage: Linux kernel image, loaded into memory by U-Boot

 zynq_fsbl_0.elf: FSBL image used to create BOOT.BIN image

© Copyright 2013 Xilinx

Page 49 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

 hello_world_linux.c: sample ‘hello world’ c file used

 stub.tcl: script file specific to the ZedBoard rev C

5.2 Booting Linux on a ZedBoard

This section covers the flow for booting Linux on the target board using the

provided precompiled images.

5.2.1 Boot Methods

The following boot methods are available:

 Master Boot Method

 Slave Boot Method

Master Boot Method

In the master boot method, different kinds of non-volatile memories like QSPI, NAND,

NOR flash, and SD cards are used to store boot images. In this method, the CPU loads

and executes the external boot images from non-volatile memory into the Processor

System (PS). The master boot method is further divided into Secure and Non Secure

modes. Refer to the Zynq-7000 All Programmable SoC Technical Reference Manual

(UG585) for more detail.

The boot process is initiated by the ARM Cortex-A9 CPU0 in the PS and it executes on-

chip ROM code. The on-chip ROM code is responsible for loading the first stage boot

loader (FSBL). The FSBL does the following:

 Configures the FPGA with the hardware bitstream (if it exists)

 Configures the MIO interface

 Initializes the DDR controller

 Initializes the clock PLL

 Loads and executes the Linux U-Boot image from non-volatile memory to DDR

The U-Boot loads and starts the execution of the Kernel image, the root file system, and

the device tree from non-volatile memory to DDR. It finishes booting Linux on the target

platform.

© Copyright 2013 Xilinx

Page 50 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Slave Boot Method

JTAG can only be used in slave boot mode. An external host computer acts as the master

to load the boot image into the OCM using a JTAG connection.

The PS CPU remains in idle mode while the boot image loads. The slave boot method is

always a non-secure mode of booting.

In JTAG boot mode, the CPU enters the halt mode immediately after it disables access to

all security related items and enables the JTAG port. You must download the boot images

into the DDR memory before restarting the CPU for execution.

5.2.2 Booting Linux from JTAG

The flowchart illustrates the process used to boot Linux on the ZedBoard.

Figure 5-1: Linux Boot Process on the ZedBoard

© Copyright 2013 Xilinx

Page 51 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

5.2.3 Take a Test Drive! Booting Linux in JTAG Mode

1. Check the board connections and settings:

a. Ensure that the jumpers JP7-JP11 are set as shown in Figure 5-2:Jumper

Settings to boot in JTAG mode.

Figure 5-2:Jumper Settings to boot in JTAG mode

b. Connect an Ethernet cable from the Zynq board to your Windows host

machine.

c. Connect the power cable to the board.

d. Connect the USB programming micro cable between the Windows Host

machine and Prog USB port on the Target board.

e. Connect a USB micro cable to the USB UART connector on the ZedBoard

with the Windows Host machine. This is used for USB to serial transfer.

2. Power on the ZedBoard.

3. Launch the SDK standalone and open the same workspace that you used in

Chapter 2 and Chapter 3. The workspace directory is found at the following

location: <path to project>/project_1.sdk/SDK/SDK_Export/

4. If the serial terminal is not open, connect the serial communication utility with the

baud rate set to 115200.

5. Open the XMD tool by selecting Xilinx Tools > XMD console

6. At the XMD prompt, do following:

a. Type connect arm hw to connect with the PS section CPU.

© Copyright 2013 Xilinx

Page 52 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

b. Type source <path to project>/project_1.sdk/SDK/SDK_Export/hw/

ps7_init.tcl and then type ps7_init at the command prompt to initialize the

PS section (such as Clock PLL, MIO, and DDR initialization).

IMPORTANT! If you are using a rev C Zedboard, follow steps c and d.

Otherwise, skip to step e.

c. At the command prompt type source <directory>/stub.tcl

Note: Where stub.tcl is located in the location where you unzipped the

contents of the downloaded zip file.

d. Type target 64 to provide execution control to CPU0.

e. Type dow <directory>/u-boot.elf to download Linux U-Boot.

f. Type con to start execution of U-Boot. Immediately switch to the serial

terminal.

On the serial terminal, the autoboot countdown message appears:

Hit any key to stop autoboot: 3

g. Press any key.

Automatic booting from U-Boot stops and a command prompt appears on the serial

terminal.

h. At the XMD Prompt, type stop.

The U-Boot execution is stopped.

i. Type dow -data <directory>/zImage.bin 0x8000 to download the Linux

Kernel image (zImage) at location 0x8000.

j. Type dow -data <directory>/ramdisk8M.image.gz 0x800000 to

download the Linux root file system image at location 0x800000.

k. Type dow -data <directory>/devicetree.dtb 0x1000000 to download the

Linux device tree at location 0x1000000.

l. Type con to start executing U-Boot.

7. At the command prompt of the serial terminal, type go 0x8000.

© Copyright 2013 Xilinx

Page 53 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

The Linux OS boots. After booting completes, the zynq> prompt appears on the

serial terminal

8. At the zynq> prompt, do the following:

a. Set the IP address of the board by typing the following command at the

zynq> prompt: ifconfig eth0 192.168.1.10 netmask 255.255.255.0

This command sets the board IP address to 192.168.1.10.

b. Check the connection with the board by typing ping 192.168.1.10. The

following ping response displays in a continuous loop:

64 bytes from 192.168.1.10: seq=0 ttl=64 time=0.185 ms

This response means that the connection between the Windows host machine

and the target board is established.

c. Press Ctrl+C to stop displaying the ping response.

Linux booting completes on the target board and the connection between the

host machine and the target board is done.

5.2.4 Booting Linux from QSPI Flash

5.2.5 Take a Test Drive! Booting Linux from QSPI Flash

This Test Drive covers the following steps:

1. Create the First Stage Boot Loader Executable File.

2. Make a Linux Bootable Image for QSPI Flash.

3. Program QSPI Flash with the Boot Image using JTAG.

4. Booting Linux from QSPI Flash.

1. Step 1: Create the First Stage Boot Loader Executable File

Note: You can skip this step by using the zynq_fsbl_0.elf provided.

1. In SDK, select File > New > Application Project.

The New Project wizard opens; for Project Name, type in zynq_fsbl_0 and

click Next.

2. Select Zynq FSBL in the Template list and keep the remaining default options.

The Location of your project, the hardware platform used, and the processor are

visible in this window. The processor is ps7_cortexa9_0.

© Copyright 2013 Xilinx

Page 54 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

3. Click Finish to generate the FSBL.

The Zynq FSBL compiles and .elf file is generated.

2. Step 2: Make a Linux Bootable Image for QSPI Flash

1. In SDK, select Xilinx Tools > Create Zynq Boot Image.

The ‘Create Zynq Boot Image’ wizard opens.

2. Provide the path to zynq_fsbl_0.elf in the FSBL ELF field.

3. Add the provided U-Boot image.

4. Add the Linux Kernel image, zImage.bin, and provide the offset 0x100000.

IMPORTANT: There is a Known Issue with the Bootgen command: it does

not accept a file without a file extension. To work around this issue, change

the zImage downloaded file to zImage.bin.

5. Add the device tree image (devicetree.dtb) and provide offset - 0x3c0000.

6. Add the root file system image (ramdisk8M.image.gz) and provide offset

0x400000.

The provided offsets are predefined in the U-Boot. U-Boot expects those addresses

when booting from QSPI, therefore you must not change the offset without

modifying and re-building the U-Boot image.

7. Provide the absolute path to the output folder name in the Output older tab.

In this example, we have used “qspi-boot” as the folder to store the output

files.

© Copyright 2013 Xilinx

Page 55 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-3:Creating a Zynq QSPI Boot Image

8. Click Create Image.

The Create Zynq Boot Image window creates following files in the specified

output folder:

bootimage.bif

u-boot.bin

u-boot.mcs

3. Step 3: Program QSPI Flash with Boot Image using JTAG & UBoot

1. Power on the ZedBoard.

2. Set the Jumpers JP7-11 to the JTAG boot mode:

MI06: 0

MI05: 0

MI04: 0

MI03: 0

MI02: 0

© Copyright 2013 Xilinx

Page 56 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

3. If a serial terminal is not open, connect the serial terminal with the baud rate

set to 115200.

4. Select Xilinx Tools > XMD Console to open the XMD tool.

5. From the XMD prompt, do the following:

a. Type connect arm hw to connect with the PS section CPU.

b. Type source ps7_init.tcl and then ps7_init to initialize the PS section

(such as Clock PLL, MIO, and DDR initialization).

c. Type dow <directory>/u-boot.elf to download the Linux U-Boot to

the QSPI Flash.

Note: The <directory> is the output directory you previously

provided.

d. Type dow -data <boot_directory>/u-boot.bin 0x08000000 to

download the Linux bootable image to the target memory at location

0x08000000.

You just downloaded the binary executable to DDR memory. You can download

the binary executable to any address in DDR memory, but make sure that you do

not change the U-Boot executable, which is loaded at 0x04000000. You run this

file after loading the u-boot.bin data file.

e. Type con to start execution of U-Boot.

On the serial terminal, the autoboot countdown message appears:

Hit any key to stop autoboot: 3

6. Press Enter.

Automatic booting from U-Boot stops and the zed-boot> command prompt

appears on the serial terminal.

7. Do the following steps to program U-Boot with the bootable image:

a. At the prompt, type sf probe 0 0 0 to select the QSPI flash.

b. Type sf erase 0 0x01000000 to erase the Flash data. (Note that this

step can take about 8 minutes to complete.)

c. Type sf write 0x08000000 0 0xFFFFFF to write the boot image on

the QSPI Flash.

Note that you already copied the bootable image at DDR location 0x08000000.

This command copied the data, of the size equivalent to the bootable image size,

from DDR to QSPI location 0x0.

You can change the argument to adjust the bootable image size.

© Copyright 2013 Xilinx

Page 57 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-4: Serial Terminal Window showing QSPI programming

8. Power off the board.

4. Booting Linux from the QSPI Flash

1. After you program the QSPI Flash, set the jumper settings (JP7-11) on the

ZedBoard. Jumper settings for QSPI:

MI06: 0

MI05: 1

MI04: 0

MI03: 0

MI02: 0

2. Connect the Serial terminal with a 115200 baud rate setting.

3. Switch on the board power.

A Linux booting message appears on the serial terminal. After booting finishes,

the zynq> prompt appears.

© Copyright 2013 Xilinx

Page 58 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-5:Serial Terminal Window showing Linux Booting

5.2.6 Booting Linux from the SD Card

5.2.7 Take a Test Drive! Booting Linux from the SD Card

Ensure that the jumper settings (JP7-11) are set to boot from SD card as shown in the

figure.

Figure 5-6:Jumper Settings to boot from SD Card

1. Create an FSBL for your design as described in “Step 1: Create the First Stage

Boot Loader Executable File” . Alternatively, you can use the zync_fsbl_0.elf file

that you downloaded previously.

© Copyright 2013 Xilinx

Page 59 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

2. In SDK, select Xilinx Tools > Create Zynq Boot Image to open the “Create

Zynq Boot Image” wizard. Alternatively, you can use the u-boot.bin file that

you downloaded previously, and skip to step 6.

3. Add zynq_fsbl_0.elf and u-boot.elf.

4. Provide the location to store all generated files in the Output Folder field.

Make sure to rename

5. Click Create Image. SDK generates the u-boot.bin file in the specified

output folder.

6. Rename u-boot.bin to BOOT.bin. Copy BOOT.bin, zImage, devicetree.dtb

and ramdisk8M.image.gz to the SD card. Make sure the SD card is FAT32

formatted before copying the files into it.

7. Turn on the power to the board and check the messages on the Serial

terminal. The zynq> prompt appears after Linux booting is complete on the

target board.

5.3 Hello World Example

This example shows you how to create a simple Linux application that prints “Hello

World” on a serial terminal window.

5.3.1 Take a Test Drive! Running a “Hello World” Application

1. Setup your ZedBoard connections

a. Connect the power cable to the ZedBoard.

b. Connect a USB micro cable to the USB UART connector on the ZedBoard

with the Windows Host machine. This is used for USB to serial transfer.

c. Make sure the SD card with the Linux image is inserted into the ZedBoard.

2. Launch SDK, and navigate to the same project directory that you used earlier in

this chapter to create an FSBL. In this section, the directory used for illustration is:

C:\zedboard-143\project_1\project_1.sdk\SDK\SDK_Export.

3. In SDK, select File > New > Application Project.

© Copyright 2013 Xilinx

Page 60 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-7: New Project Selection

4. Enter hello_world_ap in the Project name field

5. Select Linux as the OS Platform in the Target Software and select Finish.

6. Select C as the Language.

7. Click Next.

© Copyright 2013 Xilinx

Page 61 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-8: Application Project

8. Select Linux Empty Application and click Finish.

© Copyright 2013 Xilinx

Page 62 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-9:Add An Empty Application

9. Add a Software Application. At this point, you will create a software platform and

an empty software project for the hardware. You will then import the

hello_world_linux.c into the project, and SDK will automatically build and

produce an elf (Executable and Load Format) file.

10. Right Click hello_world_ap and select Import.

11. In the Import dialog box, select General  File System and select Next.

© Copyright 2013 Xilinx

Page 63 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-10:Import .c file

12. Browse to the directory in which you saved the files that you downloaded. Select

hello_world_linux.c and select Finish . In this example, the directory is

C:\zedboard-143\files.

© Copyright 2013 Xilinx

Page 64 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-11: Select hello_world_linux.c

Check that the application is built without errors. Check the message log in the Console

window. You will see text similar to:

Invoking: ARM Linux Print Size
arm-xilinx-linux-gnueabi-size hello_world_ap.elf |tee
"hello_world_ap.elf.size"
 text data bss dec hex filename
 1440 292 4 1736 6c8
 hello_world_ap.elf
Finished building: hello_world_ap.elf.size

' '

1. In your project directory, you will see that the compiled file, hello_world_ap.elf

has been created. In this example, hello_world_ap.elf is located in the directory:

C:\zedboard-143\project_1\project_1.sdk\SDK\SDK_Export\hello_world_ap\Debug

© Copyright 2013 Xilinx

Page 65 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

2. Copy hello_world_ap.elf to the SD card containing the Linux boot files.

3. Insert the SD card back into the ZedBoard.

4. Ensure that the Jumpers JP7-11 are set in SD card boot mode.

5. Power on the ZedBoard, and open a serial terminal window.

6. Boot Linux on the ZedBoard from the SD card with the pre-built image.

7. You will know that Linux has been successfully booted when you see the zynq>
prompt in your serial teriminal window.

Figure 5-12:Serial Teriminal Window showing Linux Booting

8. In the serial terminal window, at the zynq> prompt type:

zynq> mount /dev/mmcblk0p1 /mnt

zynq> /mnt/hello_world_ap.elf

This executes the hello_world_ap program and you see the display on the terminal.

© Copyright 2013 Xilinx

Page 66 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-13: Serial Terminal Window showing hello_world_linux running

5.4 Controlling LEDs and Switches in Linux Example

This example shows you how to create a simple Linux application that controls the status

of the LEDs and prints the value of the switch settings, then prints “Hello World” on a

serial terminal window. In this example, the default ZedBoard settings in PlanAhead as

well as XPS are used; a bitstream is generated in PlanAhead and then the entire design is

exported to SDK.

5.4.1 Take a Test Drive! Controlling LEDs and Switches in a Linux
Application

For this test drive, just as you did in Chapter 2, you start the ISE PlanAhead design

and analysis tool and create a project with an embedded processor system as the top

level.

Start the PlanAhead tool.

3. Select Create New Project to open the New Project wizard.

4. Use the information in the table below to make your selections in the wizard

screens.

© Copyright 2013 Xilinx

Page 67 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Wizard Screen System Property Setting or Command to Use

Project Name Project name Specify the project name.

Project location Specify the directory in which to store

the project files.

Create Project Subdirectory Leave this checked.

Project Type Specify the type of sources for

your design. You can start with

RTL or a synthesized EDIF

Use the default selection, RTL Project.

Add Sources Do not make any changes on this screen.

Add Existing IP Do not make any changes on this screen.

Add Constraints Do not make any changes on this screen.

Default Part Specify Select Boards.

Board Select ZedBoard Zynq Evaluation and

Development Kit

New Project Summary Project summary Review the project summary before

clicking Finish to create the project.

Figure 5-14: New Project Wizard Part Selection

© Copyright 2013 Xilinx

Page 68 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

When you click Finish, the New Project wizard closes and the project you just

created opens in the PlanAhead design tool.

Figure 5-15: PlanAhead GUI

You'll now use the Add Sources wizard to create an embedded processor project.

11. Click Add Sources in the Project Manager.

The Add Sources wizard opens.

12. Select the Add or Create Embedded Sources option and click Next.

13. In the Add or Create Embedded Source window, click Create Sub-Design.

14. Type a name for the module and click OK. For this example, use the name

system.

The module you created displays in the sources list.

15. Click Finish.

The PlanAhead design tool creates your embedded design source project. It

recognizes that you have an embedded processor system and starts XPS.

© Copyright 2013 Xilinx

Page 69 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Continuing Your Design in XPS

Create a new embedded system in XPS using the Base System Builder (BSB)

Wizard.

In the BSB Wizard, you can select and configure the processing system I/O

interface and add default peripherals to the fabric.

Designing a New Embedded System Using the BSB Wizard

1. The dialog box opens, and asks if you want to create a Base System using the

BSB Wizard. Select Yes.

Figure 5-16: Platform Studio dialog box

The first window of the BSB asks you to elect whether to create an AXI-based or

PLB-based system.

© Copyright 2013 Xilinx

Page 70 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-17:Create New Project BSB Wizard

2. Select AXI System and click OK.

3. In the Base System Builder wizard, create a project using the settings described

in the table. Where a setting or command has not been specified, accept the

default values.

Wizard Screen System Property Setting or Command to Use

Board and System

Selection

Board Use the default option to create a system

for ZedBoard Zynq Evaluation and

Development Kit.

Note: This is pre-populated because you

selected this board in the PlanAhead tool.

Board Configuration This information is pre-populated based

on your board selection..

Select a System Zynq Procesing System 7

Peripheral

Configuration

Select and Configure Peripherals Leave the default peripheral

Configuration as-is.

© Copyright 2013 Xilinx

Page 71 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-18: Peripheral Configuration Wizard

4. Click Finish.

5. Close the XPS window. The active PlanAhead tool session updates itself with

the project settings.

5. Back in PlanAhead, under Design Sources in the Sources pane, select and right-

click system (system.xmp) and select Create Top HDL.

PlanAhead generates the system_stub.v top-level module for the design.

6. Generate a Bitstream: Under Program and Debug, select Generate Bitstream

7. Select File > Export > Export Hardware for SDK.

The Export Hardware dialog box opens.

8. Check the Include Bitstream check-box By default, the Export Hardware

check-box is checked.

9. Check the Launch SDK check-box.

10. Click OK; SDK opens.

© Copyright 2013 Xilinx

Page 72 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Continuing Your Design in SDK

1. Connect the12V AC/DC converter power cable to the ZedBoard barrel jack.

2. Connect a USB micro cable between the Windows Host machine and the

ZedBoard JTAG (J17).

3. Connect a USB micro cable to the USB UART connector (J14) on the ZedBoard

with the Windows Host machine. This is used for USB to serial transfer.

4. Connect an Ethernet cable between the ZedBoard and the Windows Host

machine.

5. Power on the board using the jumper settings to boot from SD card.

MIO6: 0

MI05: 1

MIO4: 1

MIO3: 0

MIO2: 0

6. Open a serial communication utility for the COM port assigned on your system.

The default configuration for Zynq Processing System is: Baud rate 115200; 8 bit;

Parity: none; Stop: 1 bit; Flow control: none

7. Linux boots up, and you will see the promt zynq> in the serial terminal window.

Next, program the FPGA with the bitstream created in PlanAhead.

8. In SDK, select Xilinx Tools  Program FPGA. Select the bitstream generated in

PlanAhead, and click Program.

9. When the FPGA is programmed, you will see the DONE LED LD12 light up in blue.

It may be necessary to double check the IP address of the ZedBoard for the subsequent

steps. With the serial terminal open, at the zynq> prompt, type ifconfig eth0 to verify

that the address is set for 192.168.1.10. This should be the default IP address of the

ZedBoard. If the IP address is not the same as above, then type: ifconfig eth0

192.168.1.10 netmask 255.255.255.0 to set the correct board IP address.

Add the software application.

10. In SDK, select File > New > Application Project

© Copyright 2013 Xilinx

Page 73 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-19: New Project Selection

11. Enter leds_switches in the Project name field

12. Select Linux as the OS Platform in the Target Software and select Finish.

13. Select C as the Language.

14. Click Next.

15. Select Linux Empty Application and click Finish.

© Copyright 2013 Xilinx

Page 74 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-20:Add An Empty Application

16. Add a Software Application. At this point, you will create a software platform and an

empty software project for the hardware. You will then import the

hello_world_linux.c into the project, and SDK will automatically build and produce

an elf (Executable and Load Format) file.

17. Right Click leds_switches and select Import.

18. In the Import dialog box, select General  File System and select Next.

© Copyright 2013 Xilinx

Page 75 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Figure 5-21:Import .c file

19. Browse to the directory in which you saved the files that you downloaded. Select

leds_switches.c and select Finish . In this example, the directory is C:\zedboard-

143\files.

Check that the application is built without errors. Check the message log in the Console

window.

Debugging the Linux Application: Using SDK Remote Debugging

1. Right-click leds_switches and select Debug as > Debug Configurations..

The Debug Configuration wizard opens.

2. In the Debug Configuration wizard, right-click Remote ARM Linux

Application and click New.

3. In the Connection drop-down list, click New.

4. The New Connection wizard opens.

5. Click the SSH Only tab and click Next.

6. In the Host Name tab, type the target board IP (it should be 192.168.1.10)

7. Set the connection name and description in the respective tabs.

© Copyright 2013 Xilinx

Page 76 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

8. Click Finish to create the connection.

9. In the Debug Configuration wizard, under Remote "Absolute File Path for

C/C++ Application,” click the Browse button . The Select Remote C/C++

Application File wizard opens.

10. Do the following:

a. Expand the root directory. It opens the Enter Password wizard.

b. Provide the user ID and Password (root/root); select the Save ID and Save

Password options.

c. Click OK.

The window displays the root directory contents, because you previously

established the connection between the Windows host machine and the target

board.

d. Right-click on the “/” in the path name and create a new directory; name it

Apps.

e. In the Apps directory, create a new file titled leds_switches_0.elf.

f. Provide an application absolute path, such as /Apps/leds_switches_0.elf.

11. Click Apply.

12. Click Debug.

The Debug Perspective opens.

13. Turn off the Verbose console mode in the console window.

14. Step through the code or run the code, and watch the messages in the console

window. AT the same time, you will notice the values of the Variables in the

window on the top left hand side, show the status of the switches and LEDs.

15. The Console window displays the values of the LEDs and Switches, and Prints

‘Hello World’.

16. Change the switch settings, and re-run the application to see the appropriately

different values reported.

17. Exit SDK

© Copyright 2013 Xilinx

Page 77 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Chapter 6 Further “How-to’s” and Examples

Further examples on a variety of ZedBoard topics are explored and explained on

ZedBoard.org. In particular, Zynqgeek Blog (http://zedboard.org/zynqgeek) contains

helpful step-by-step instructions on several topics in particular:

1. Creating a Custom Peripheral

This webpage describes how to create a custom peripheral in the

Programmable Logic portion of the Zynq-7000 device on the ZedBoard, and

to communicate with it via the ARM Processing Subsystem. This design

example follows the same steps as described in Chapter 2, starting with

creating a PlanAhead project and exporting it to SDK.

2. Talking to a Custom Peripheral

Once you’ve created a Custom Peripheral, this webpage explains how to use

the Software Template created via the same custom peripheral wizard.

In addition to Zynqgeek’s Blog, there are other useful links for the registered

ZedBoard user on ZedBoard.org. Here is a sampling of the resources available to the

registered members of the website:

3. Building a Zynq Video Design from Scratch

Leverage the processing and hardware acceleration capabilities of the Zynq

SoC in building a HDMI pass-through video design. The latest version is

linked above and may require additional mezzanine based hardware to the

ZedBoard.

4. Community Projects

Follow the latest ZedBoard community projects on ZedBoard.org. These

projects range from software defined radios to further tutorials to widen your

knowledge of Zynq, the Zedboard and Xilinx design tools.

5. Support and Troubleshooting

There is a very active and vibrant Zynq and ZedBoard community on

ZedBoard.org. For help in using the ZedBoard, the Support Forums provide

an invaluable community based resource that can be leveraged.

Also helpful are Zynq specific documentation published on the Xilinx website. In

particular, these two user guides expand on concepts covered in this document:

6. Zynq-7000 All Programmable SoC Software Developers Guide

Summarizes the software-centric information required for designing with the

Xilinx Zynq-7000 Extensible Processing Platform (EPP) devices.

http://zedboard.org/zynqgeek
http://www.zedboard.org/content/creating-custom-peripheral
http://www.zedboard.org/content/talking-custom-peripheral-bare-metal
http://www.zedboard.org/sites/default/files/design/FMC_IMAGEON_Building_Video_Design_Tutorial_14_4_20130110.zip
http://www.zedboard.org/sites/default/files/design/FMC_IMAGEON_Building_Video_Design_Tutorial_14_4_20130110.zip
http://www.zedboard.org/projects
http://www.zedboard.org/projects
http://www.zedboard.org/forums/zedboard-english-forum
http://www.zedboard.org/forums/zedboard-english-forum
http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf

© Copyright 2013 Xilinx

Page 78 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

7. Zynq-7000 All Programmable SoC Technical Reference Manual

This user guide serves as a technical reference manual for the Zynq-7000 All

Programmable SoC (AP SoC).

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

© Copyright 2013 Xilinx

Page 79 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

Appendix A

Application Software

A.1 About the Application Software

The system you designed in this guide requires application software for the

execution on the board. This appendix describes the details about the application

software.

The main() function in the application software is the entry point for the execution.

This function includes initialization and the required settings for all peripherals

connected in the system. It also has a selection procedure for the execution of the

different use cases, such as AXI GPIO and PS GPIO using EMIO interface. You can

select different use cases by following the instruction on the serial terminal.

A.2 Application Software Steps

Application Software comprises the following steps:

Initialize the AXI GPIO module.

1. Set a direction control for the AXI GPIO pin as an input pin, which is connected

with BTNU push button on the board. The location is fixed via LOC constraint

in the user constraint file (UCF) during system creation.

2. Initialize the AXI TIMER module with device ID 0.

3. Associate a timer callback function with AXI timer ISR.

4. This function is called every time the timer interrupt happens. This callback

switches on the LED ‘LD9’ on the board and sets the interrupt flag.

5. The main() function uses the interrupt flag to halt execution, wait for timer

interrupt to happen, and then restarts the execution.

6. Set the reset value of the timer, which is loaded to the timer during reset and

timer starts.

7. Set timer options such as Interrupt mode and Auto Reload mode.

8. Initialize the PS section GPIO.

© Copyright 2013 Xilinx

Page 80 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

9. Set the PS section GPIO, channel 0, pin number 10 to the output pin, which is

mapped to the MIO pin and physically connected to the LED ‘LD9’ on the

board.

10. Set PS Section GPIO channel number 2 pin number 0 to input pin, which is

mapped to PL side pin via the EMIO interface and physically connected to the

BTNR push button switch.

11. Initialize Snoop control unit Global Interrupt controller. Also, register Timer

interrupt routine to interrupt ID '91', register the exceptional handler, and enable

the interrupt.

12. Execute a sequence in the loop to select between AXI GPIO or PS GPIO use

case via serial terminal.

The software accepts your selection from the serial terminal and executes the

procedure accordingly.

After the selection of the use case via the serial terminal, you must press a push

button on the board as per the instruction on terminal. This action switches off

the LED ‘LD9’, starts the timer, and tells the function to wait for the Timer

interrupt to happen. After the Timer interrupt happens, LED 'LD9'' switches ON

and restarts execution.

For more details about the API related to device drivers, refer to the Zynq-7000

Software Developers Guide (UG821) linked to in the previous chapter.

A.3 Application Software Code

Below is the Application software for the system:

/*

 * Copyright (c) 2009 Xilinx, Inc. All rights reserved.

 *

 * Xilinx, Inc.

 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A

 * COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS

 * ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR

 * STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION

 * IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE

 * FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.

 * XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO

 * THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO

 * ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE

 * FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY

 * AND FITNESS FOR A PARTICULAR PURPOSE.

 *

 * helloworld.c: simple test application

 */

#include <stdio.h>

#include "platform.h"

#include "xil_types.h"

#include "xgpio.h"

#include "xtmrctr.h"

#include "xparameters.h"

#include "xgpiops.h"

© Copyright 2013 Xilinx

Page 81 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

#include "xil_io.h"

#include "xil_exception.h"

#include "xscugic.h"

static XGpioPs psGpioInstancePtr;

extern XGpioPs_Config XGpioPs_ConfigTable[XPAR_XGPIOPS_NUM_INSTANCES];

static int iPinNumber = 7; /*Led LD9 is connected to MIO pin 7*/

XScuGic InterruptController; /* Instance of the Interrupt Controller */

static XScuGic_Config *GicConfig;/* The configuration parameters of the

 controller */

static int InterruptFlag;

extern char inbyte(void);

void Timer_InterruptHandler(void *data, u8 TmrCtrNumber)

{

 print("\r\n");

 print("\r\n");

 print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\r\n");

 print(" Inside Timer ISR \n \r ");

 XTmrCtr_Stop(data,TmrCtrNumber);

 // PS GPIO Writing

 print("LED 'LD9' Turned ON \r\n");

 XGpioPs_WritePin(&psGpioInstancePtr,iPinNumber,1);

 XTmrCtr_Reset(data,TmrCtrNumber);

 print(" Timer ISR Exit\n \n \r");

 print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\r\n");

 print("\r\n");

 print("\r\n");

 InterruptFlag = 1;

}

int SetUpInterruptSystem(XScuGic *XScuGicInstancePtr)

{

 /*

 * Connect the interrupt controller interrupt handler to the hardware

 * interrupt handling logic in the ARM processor.

 */

 Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,

 (Xil_ExceptionHandler) XScuGic_InterruptHandler,

 XScuGicInstancePtr);

 /*

 * Enable interrupts in the ARM

 */

 Xil_ExceptionEnable();

 return XST_SUCCESS;

}

int ScuGicInterrupt_Init(u16 DeviceId,XTmrCtr *TimerInstancePtr)

{

 int Status;

 /*

 * Initialize the interrupt controller driver so that it is ready to

 * use.

 */

 GicConfig = XScuGic_LookupConfig(DeviceId);

 if (NULL == GicConfig) {

 return XST_FAILURE;

 }

 Status = XScuGic_CfgInitialize(&InterruptController, GicConfig,

 GicConfig->CpuBaseAddress);

 if (Status != XST_SUCCESS) {

 return XST_FAILURE;

 }

 /*

 * Setup the Interrupt System

 */

 Status = SetUpInterruptSystem(&InterruptController);

 if (Status != XST_SUCCESS) {

 return XST_FAILURE;

 }

 /*

 * Connect a device driver handler that will be called when an

© Copyright 2013 Xilinx

Page 82 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

 * interrupt for the device occurs, the device driver handler performs

 * the specific interrupt processing for the device

 */

 Status = XScuGic_Connect(&InterruptController,

 XPAR_FABRIC_AXI_TIMER_0_INTERRUPT_INTR,

 (Xil_ExceptionHandler)XTmrCtr_InterruptHandler,

 (void *)TimerInstancePtr);

 if (Status != XST_SUCCESS) {

 return XST_FAILURE;

 }

 /*

 * Enable the interrupt for the device and then cause (simulate) an

 * interrupt so the handlers will be called

 */

 XScuGic_Enable(&InterruptController, XPAR_FABRIC_AXI_TIMER_0_INTERRUPT_INTR);

 return XST_SUCCESS;

}

int main()

{

 static XGpio GPIOInstance_Ptr;

 XGpioPs_Config*GpioConfigPtr;

 XTmrCtr TimerInstancePtr;

 int xStatus;

 u32 Readstatus=0,OldReadStatus=0;

 //u32 EffectiveAdress = 0xE000A000;

 int iPinNumberEMIO = 54;

 u32 uPinDirectionEMIO = 0x0;

 // Input Pin

 // Pin direction

 u32 uPinDirection = 0x1;

 int exit_flag,choice,internal_choice;

 init_platform();

 /* data = *(u32 *)(0x42800004);

 print("OK \n");

 data = *(u32 *)(0x41200004);

 print("OK-1 \n");

 */

 print("##### Application Starts #####\n\r");

 print("\r\n");

 //~~~

 //Step-1 :AXI GPIO Initialization

 //~~~

 xStatus = XGpio_Initialize(&GPIOInstance_Ptr,XPAR_AXI_GPIO_0_DEVICE_ID);

 if(XST_SUCCESS != xStatus)

 print("GPIO INIT FAILED\n\r");

 //~~~

 //Step-2 :AXI GPIO Set the Direction

 //~~~

 XGpio_SetDataDirection(&GPIOInstance_Ptr, 1,1);

 //~~~

 //Step-3 :AXI Timer Initialization

 //~~~

 xStatus = XTmrCtr_Initialize(&TimerInstancePtr,XPAR_AXI_TIMER_0_DEVICE_ID);

 if(XST_SUCCESS != xStatus)

 print("TIMER INIT FAILED \n\r");

 //~~~

 //Step-4 :Set Timer Handler

 //~~~

 XTmrCtr_SetHandler(&TimerInstancePtr,

 Timer_InterruptHandler,

 &TimerInstancePtr);

 //~~~

 //Step-5 :Setting timer Reset Value

 //~~~

 XTmrCtr_SetResetValue(&TimerInstancePtr,

 0, //Change with generic value

 0xf0000000);

 //~~~

 //Step-6 :Setting timer Option (Interrupt Mode And Auto Reload)

 //~~~

© Copyright 2013 Xilinx

Page 83 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

 XTmrCtr_SetOptions(&TimerInstancePtr,

 XPAR_AXI_TIMER_0_DEVICE_ID,

 (XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION));

 //~~~

 //Step-7 :PS GPIO Intialization

 //~~~

 GpioConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID);

 if(GpioConfigPtr == NULL)

 return XST_FAILURE;

 xStatus = XGpioPs_CfgInitialize(&psGpioInstancePtr,

 GpioConfigPtr,

 GpioConfigPtr->BaseAddr);

 if(XST_SUCCESS != xStatus)

 print(" PS GPIO INIT FAILED \n\r");

 //~~~

 //Step-8 :PS GPIO pin setting to Output

 //~~~

 XGpioPs_SetDirectionPin(&psGpioInstancePtr, iPinNumber,uPinDirection);

 XGpioPs_SetOutputEnablePin(&psGpioInstancePtr, iPinNumber,1);

 //~~~

 //Step-9 :EMIO PIN Setting to Input port

 //~~~

 XGpioPs_SetDirectionPin(&psGpioInstancePtr,

 iPinNumberEMIO,uPinDirectionEMIO);

 XGpioPs_SetOutputEnablePin(&psGpioInstancePtr, iPinNumberEMIO,0);

 //~~~

 //Step-10 : SCUGIC interrupt controller Initialization

 //Registration of the Timer ISR

 //~~~

 xStatus=

 ScuGicInterrupt_Init(XPAR_PS7_SCUGIC_0_DEVICE_ID,&TimerInstancePtr);

 if(XST_SUCCESS != xStatus)

 print(" :(SCUGIC INIT FAILED \n\r");

 //~~~

 //Step-11 :User selection procedure to select and execute tests

 //~~~

 exit_flag = 0;

 while(exit_flag != 1)

 {

 print(" SELECT the Operation from the Below Menu \r\n");

 print("###################### Menu Starts ########################\r\n");

 print("Press '1' to use NORMAL GPIO as an input (BTNU switch)\r\n");

 print("Press '2' to use EMIO as an input (BTNR switch)\r\n");

 print("Press any other key to Exit\r\n");

 print(" ##################### Menu Ends #########################\r\n");

 choice = inbyte();

 printf("Selection : %c \r\n",choice);

 internal_choice = 1;

 switch(choice)

 {

 //~~~~~~~~~~~~~~~~~~~~~~~

 // Use case for AXI GPIO

 //~~~~~~~~~~~~~~~~~~~~~~~~

 case '1':

 exit_flag = 0;

 print("Press Switch 'BTNU' push button on board \r\n");

 print(" \r\n");

 while(internal_choice != '0')

 {

 Readstatus = XGpio_DiscreteRead(&GPIOInstance_Ptr, 1);

 if(1== Readstatus && 0 == OldReadStatus)

 {

 print("$$$\r\n");

 print("BTNU PUSH Button pressed \n\r");

 print("LED 'LD9' Turned OFF \r\n");

 XGpioPs_WritePin(&psGpioInstancePtr,iPinNumber,0);

 //Start Timer

 XTmrCtr_Start(&TimerInstancePtr,0);

 print("timer start \n\r");

 //Wait For interrupt;

 print("Wait for the Timer interrupt to tigger \r\n");

© Copyright 2013 Xilinx

Page 84 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

 print("$$$\r\n");

 print(" \r\n");

 while(InterruptFlag != 1);

 InterruptFlag = 0;

 print(" ###\r\n ");

 print("Press '0' to go to Main Menu \n\r ");

 print("Press any other key to remain in AXI GPIO Test \n\r ");

 print(" ###\r\n ");

 internal_choice = inbyte();

 printf("Select = %c \r\n",internal_choice);

 if(internal_choice != '0')

 {

 print("Press Switch 'BTNU' push button on board \r\n");

 }

 }

 OldReadStatus = Readstatus;

 }

 print(" \r\n");

 print(" \r\n");

 break;

 case '2' :

 //~~~~~~~~~~~~~~~~~~~~~~~

 //Usecase for PS GPIO

 //~~~~~~~~~~~~~~~~~~~~~~~~

 exit_flag = 0;

 print("Press Switch 'BTNR' push button on board \r\n");

 print(" \r\n");

 while(internal_choice != '0')

 {

 Readstatus = XGpioPs_ReadPin(&psGpioInstancePtr,

 iPinNumberEMIO);

 if(1== Readstatus && 0 == OldReadStatus)

 {

 print("$$$\r\n");

 print("BTNR PUSH Button pressed \n\r");

 print("LED 'LD9' Turned OFF \r\n");

 XGpioPs_WritePin(&psGpioInstancePtr,iPinNumber,0);

 //Start Timer

 XTmrCtr_Start(&TimerInstancePtr,0);

 print("timer start \n\r");

 //Wait For interrupt;

 print("Wait for the Timer interrupt to tigger \r\n");

 print("$$$\r\n");

 print(" \r\n");

 while(InterruptFlag != 1);

 InterruptFlag = 0;

 print(" ###\r\n ");

 print("Press '0' to go to Main Menu \n\r ");

 print("Press any other key to remain in EMIO Test \n\r ");

 print(" ###\r\n ");

 internal_choice = inbyte();

 printf("Select = %c \r\n",internal_choice);

 if(internal_choice != '0')

 {

 print("Press Switch 'BTNR' push button on board \r\n");

 }

 }

 OldReadStatus = Readstatus;

 }

 print(" \r\n");

 print(" \r\n");

 break;

 default :

 exit_flag = 1;

 break;

 }

 }

 print("\r\n");

 print("***********\r\n");

 print("BYE \r\n");

 print("***********\r\n");

© Copyright 2013 Xilinx

Page 85 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

 cleanup_platform();

 return 0;

}

