& XILINX

ALL PROGRAMMABLE

ZedBoard: Zynqg-7000
AP SoC Concepts,
Tools, and Techniques

A Hands-On Guide to
Effective Embedded System
Design

ZedBoard (v14.4)

& XILINX

ALL PROGRAMMABLE.

Notice of Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx
products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all
faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory
of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials
(including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or
damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the
Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited
Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-
safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx
products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2013 Xilinx
Page 1 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

& XILINX

ALL PROGRAMMABLE

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. All other
trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date Version Revision
08/20/2012 14.1 First version.
10/15/2012 14.3 Update for Xilinx ISE 14.3.
01/10/2013 14.3 Links to examples added in Chapter 6.
03/22/2013 14.4 Updated for Xilinx ISE 14.4 with revisions to the text and figures, adjusted formatting, fixed typos

and unified font sizes. Also made recommendations for an external serial terminal emulator to run
certain exercises. Added more examples and documentation links in Chapter 6.

Page 2

© Copyright 2013 Xilinx

Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

Table of Contents

Chapter 1 L) (0T [0 Tod £ o o S SSSSRSN 6
11 ADOUL ThIS GUILE ...ttt sb et bbb eebesreneas 6
R T 1 £)17 D 7
112 Additional DOCUMENTATIONc.eiiiiiiiieie ettt see s 7
113 TFAINING LADS ...ttt b e bbb nneneas 7
1.2 How Zynqg AP SoC and Xilinx software Simplify Embedded Processor Designccccceevennene. 7
1.3 What You Need to Set Up Before Startingccccveveeeieieiese s 9
13.1 Software Installation REQUIFEMENTS:ccviviieieiere e eneas 10
1.3.2 Hardware Requirements for this GUIAEcceveiiiiie i 11
Chapter 2 Embedded System Design Using the Zyng Processing SYStemccccvvvevveienenesesennnnn, 12
2.1 Embedded System CONSIIUCTIONcveieieiiesiiie e sttt sttt na e e e e e e snesneeneas 14
211 @ Tae a Test Drive! Creating a New Embedded Project With a Zynq Processing
System 14
212 @ Tske a Test Drive! EXpOorting to SDK ... 23
213 - Take a Test Drive! Running the “Hello World” Applicationcccccvecvvrvennnnne. 25
214 Additional INfFOrmMation.........ccoiiiiiii e s 30
Chapter 3 Embedded System Design Using the Zyng Processing System and Programmable Logic .32
3.1 Adding soft IP in the PL to interface with the Zynq PS........ccccooieii e 32
311 @ Take a Test Drive! Check Functionality of IP instantiated in the PL 34
3.1.2 - Take a Test Drivel Working With SDKcccoiiiiiiiiniceeee 41
Chapter 4 Debugging with SDK and ChipSCOPE PrOc.ccoviiieiiineeseree e 42
4.1 @ Take a Test Drive! Debugging with Software, Using SDK ..o, 42
4.2 - Take a Test Drive! Debugging Hardware Using ChipScope Softwarecccccveneee. 44
Chapter 5 Booting Linux and Application Debugging Using SDKccccciiiiiininiinenesenee, 48
51 REGUITEIMENTS ...ttt bbbt b et b bbbt nb et b et e 48
5.2 Booting LiNUX 0N @ ZEABOGIccvviieiieiie ettt ae e e e s 49
521 BOOT IMBENOAS ...t bbbttt b bbb 49
5.2.2 B0ooting LINUX FIOM JTAG ...c.oiie ettt sttt te e e ae e 50
523 @ Take a Test Drive! Booting Linux in JTAG MOdE...........cccevmiiiininininiiies 51
524 Booting Linux from QSPI FIashcccooiiiiiiiiiieee e 53
5.2.5 @ Tae a Test Drive! Booting Linux from QSPIFlashcccooeiiiiiiiiiiinn, 53
5.2.6 Booting Linux from the SD Cardc.cooiriiiiiiiine e 58
5.2.7 o Take a Test Drive! Booting Linux from the SD Card............ccccovvvveviiieerieeieenns 58
5.3 HEHO WOEIA EXAMPIE ... bbb 59
531 - Take a Test Drive! Running a “Hello World” Application............cccceverininnnnenne. 59
5.4 Controlling LEDs and Switches in LinuxX EXample ... 66
541 @ Take a Test Drive! Controlling LEDs and Switches ina Linux Application 66
Chapter 6 Further “How-t0’s” and EXamPles........cccccviiiniiiiinieine e 77
AADPENIX A .ottt et bt b b e b bR b bR R R R R R bR £ Rt R R e Rt E Rt R e e Rt benb ettt nh ettt 79

© Copyright 2013 Xilinx
Page 3 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

Table of Figures

Figure 2-1: DeSign FIOW fOr ZYNQ....covoiiiiiiiieseceece sttt te st ne e e st sresrenneeneas 13
Figure 2-2: New Project Wizard Part SEIECHION..........ccccoviiie it enes 15
Figure 2-3: PIANANEA GUI........cviiiieie ettt e st e e st e besteene e e et e testeneenreanean 16
Figure 2-4: Platform Studio dialog DOXcoiiiriiiiiiieie e 17
Figure 2-5: Create New ProjeCt BSB WIZAIGccciiuiiiiiiiieiieiesieie et 18
Figure 2-6: Peripheral Configuration WiIZardcccoeiiiiineiiieiere e 19
Figure 2-7:Processing System 7 in the Bus Interface tab ..., 20
Figure 2-8: System Assembly View of the Zynq Processing System Block Diagramcc.cceceevveneennen. 21
Figure 2-9: Selecting ZedBoard TEMPIALEcecveiiieieiise e e et sre e sreeneas 22
Figure 2-10: Updated Zyng BIOCK DIagramccccveiueiiieiieiieiesesiestesesesseesee e saestestessessseseesessessessessessens 23
Figure 2-11: Address Map in SDK syStem. XMl Tabcccociviiiiiiiiie e 24
Figure 2-12: ZedBoard Power switch and JUMPEr SETtINGSc.coviviiie i 25
Figure 2-13:Serial Terminal SEtINGS......civiiiiiiieieeie sttt e tesre e e et e tesresresneeneas 26
Figure 2-14:Application ProjeCt WIzZardccccvciueiiieie ittt sae e eneas 27
Figure 2-15:Hello World from Available TEMPIAtESccoiiiiiiiiiee e 28
Figure 2-16: SUCCESSTUI BUIIoviuiiiiiiiieic bbbt 29
Figure 2-17:"Hello World" on the Serial Terminalcccoooriiiiniiiieeee e 30
FIQure 3-1: BIOCK DIAGIAMcueiiiiiiiitiitiieiist etttk b ettt b ettt nn 33
Figure 3-2:Completed POrt CONNECLIONScviuiriiieiirieieiis et bbbttt 36
Figure 3-3:Processing_system7_0 Expanded and M_AXI_GPO_ACLK Connectedccocevvvrennenen. 37
Figure 3-4:Interrupt Connection DIalog BOXcccciveiiiiiieiiieie e cie et se e e e sae e ste e enae e nnee e 38
Figure 3-5:Timer Interrupt Connected 0N the PL SIAE........coiveiiiie e 38
Figure 3-6:Connected ChipSCOPE_aXi_MONILONc.ccveiieeiieie et s re e e na e esne e 38
Figure 3-7: GPIO Port Not Connected to EXErnal POItS........c.cccviuiiiiiiesiesie e 39
Figure 3-8: Design Rule CheCk WarniNGS.........ccviiiiieiie et ee et sre e ste e enae e nee e 39
Figure 3-9: system.UCT File AQUEAccv et e e e nee e 40
Figure 3-10:Program FPGA DiIalog BOXcouiiriiiiiiriiiiiiniesieise sttt 42
Figure 4-1: Debug Perspective SUSPENGEAccoiriiiriiiiireiese et 43
Figure 4-2: Trigger Setup Window, MON_AXI_ARVALID Settingcccccererrienerininennenensesesee e 45
Figure 4-3: Trigger Condition DIialog BOXccciiiiiiriiiiiiiieiseesie e 46
Figure 4-4:Waveform captured in ChIPSCOPE. ..ottt e 47
Figure 5-1: Linux Boot Process 0N the ZedBOardccceiveiiiieeiie i 50
Figure 5-2:Jumper Settings to boot iIN JTAG MOUEccceiiiiiee e e 51
Figure 5-3:Creating a Zyng QSPI BOOt IMAJEccvevieiieiie e ecie ettt st re e ae s e ne e 55
Figure 5-4: Serial Terminal Window showing QSPI programmingccccevevveveiiesieesieesee e ese e 57
Figure 5-5:Serial Terminal Window showing Linux BOOtINGcccoovveviiiieiicic e 58
Figure 5-6:Jumper Settings to boot from SD Card...........ccovieii e 58
Figure 5-7: NeW ProjECt SEIECHION.c.ciiiiiitieir bbbt 60
Figure 5-8: APPIICALION PrOJECEoviiiieiiiiiteet bbb bbb b 61
Figure 5-9:Add An EMpPty APPIICALIONc.oiviiiiiiiciiree e 62
Figure 5-10:1MPOrt .C FIlE ...eii bbb bbb 63
Figure 5-11: Select NeHo_WOITA_TINUX.Cc.oiiiiiiiiiieeee e 64
Figure 5-12:Serial Teriminal Window showing LinUX BOOtINGcccooirieiiiniiiineesese e 65
Figure 5-13: Serial Terminal Window showing hello_world_linuX running............cccoceevieiveve e e 66
Figure 5-14: New Project Wizard Part SEIECHION.cccoiiiiiiiiiie e 67
Figure 5-15: PIANAREAI GUIccuiiiiiiiie e bbbt b et saesbesbeene s 68
Figure 5-16: Platform Studio dialog DOXcoeiiiiiii e 69
Figure 5-17:Create New Project BSB WizZard...........cocoiiiiiiiiiiiiee et 70
Figure 5-18: Peripheral Configuration WiIZard...............cooiiiiiiiiiiie e s 71
Figure 5-19: NEW ProjeCt SEIECLION.cuiiiiiiireie et 73
Figure 5-20: Add An EMPtY APPLICALIONc.ooveiiiiiiciiie e 74
FIgure 5-2L1:ImMPOrt .C IR ...t 75

© Copyright 2013 Xilinx
Page 4 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

© Copyright 2013 Xilinx
Page 5 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

Chapter 1
Introduction

1.1 About this Guide

This document provides an introduction to using the Xilinx® ISE® WebPACK
software to build a Zynq™-7000 All Programmable SoC (AP SoC) design. The
examples target the ZedBoard (http://www.zedboard.org) using ISE Design Suite
14.4,

Note: The Test Drives in this document were created using Microsoft Windows 7 64-bit operating
system. Other versions of Windows might provide varied results.

The Zyng-7000 family is the world's first All Programmable SoC. This innovative
class of product combines an industry-standard ARM® dual-core Cortex™-A9
MPCore™ processing system with Xilinx 28 nm unified programmable logic
architecture. This processor-centric architecture delivers a complete embedded
processing platform that offers developers ASIC levels of performance and power
consumption, the flexibility of an FPGA, and the ease of programmability of a
microprocessor.

This guide describes the design flow for developing a custom Zyng-7000 AP SoC
based embedded processing system using the Xilinx ISE WebPACK software tools.
It contains the following five chapters:

e Chapter 1, (this chapter) provides a general overview.

e Chapter 2, “Embedded System Design Using the Zyng Processing System”
describes the tool flow for the Zynqg Processing System (PS) to create a simple
standalone "Hello World" application.

e Chapter 3, “Embedded System Design Using the Zyng Processing System and
Programmable Logic” describes how to create a system utilizing both the Zynq
PS as well as the Programmable Logic (PL).

e Chapter 4, “Debugging with SDK and ChipScope Pro” provides debugging
debugging techniques via software (using SDK Debug) and hardware (using the
ChipScope™ software)debugging tools.

e Chapter 5, “Booting Linux and Application Debugging using SDK” covers
programming of the non-volatile memories such as QSPI Flash and SD Card with the
Linux precompiled images, which are used for automatic Linux booting after
switching on the board.

© Copyright 2013 Xilinx
Page 6 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

http://www.zedboard.org/

& XILINX

ALL PROGRAMMABLE

e Chapter 6, “Further “How-to’s” and Examples” links the reader to online
resources available to the ZedBoard designer including design projects and
further documentation.

e Appendix A, “Application Software” describes details of the application needed
for the example design used in this guide.

1.1.1 s Take a Test Drive!

The best way to learn a software tool is to use it, so this guide provides
opportunities for you to work with the tools under discussion. Procedures for sample
projects are given in the Test Drive sections, along with an explanation of what is
happening behind the scenes and why you need to do it.

Test Drives are indicated by the car icon, as shown beside the heading above.

1.1.2 Additional Documentation

For further information, refer to:
e Xilinx Zyng-7000 Documentation:
http://www.xilinx.com/support/documentation/zyng-7000.htm

e Xilinx Design Tools: Installation and Licensing Guide (UG798):
http://www.Xilinx.com/support/documentation/sw manuals/xilinx14 4/iil.pdf

e Xilinx Design Tools: Release Notes Guide (UG631):
http://www.xilinx.com/support/documentation/sw manuals/xilinx2012 4/irn.pdf

e Xilinx Glossary:
http://www.xilinx.com/company/terms.htm

e Xilinx Support:
http://www.xilinx.com/support/

e ZedBoard.org:
http://www.zedboard.org

1.1.3 Training Labs

Some Test Drives have associated training labs that you can use for further practice
with the given tasks. When applicable, a description of the lab is provided at the end
of the Test Drive.

1.2 How Zynq AP SoC and Xilinx software Simplify Embedded
Processor Design

The Zyng-7000 All Programmable SoC reduces system complexity by offering a
dual core ARM Cortex-A9 processing system and hard peripherals coupled with
Xilinx 7-Series 28 nm programmable logic all integrated on a single SoC. It is the

© Copyright 2013 Xilinx
Page 7 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

http://www.xilinx.com/support/documentation/zynq-7000.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/iil.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/irn.pdf
http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support/
http://www.zedboard.org/

& XILINX

ALL PROGRAMMABLE

first of its kind in the market and has tremendous potential as a tightly integrated
system.

To simplify the design process, Xilinx offers several sets of tools. The ZedBoard kit
includes the ISE WebPACK software, and the appropriate device-locked ChipScope
Pro tools. ISE WebPACK includes the PlanAhead Design and Analysis tools,
Embedded Development Kit (EDK) for the Zyng XC7Z020 AP SoC, as well as a
limited version of the built-in simulator, ISim. The embedded processing component
of the ISE WebPACK tools includes Xilinx Platform Studio (XPS) as well as the
Software Development Kit (SDK). The Zyng Processing System (PS) may be used
without anything programmed in the Programmable Logic (PL). However, in order
to use any soft IP in the PL, or to route PS dedicated peripherals to device pins for
the PL, you have to program the PL.

With ISE Webpack you have all the Xilinx tools required to work with your
ZedBoard. It is a good idea to get to know the basic tool names, project file names,
and acronyms for these tools. You can find Xilinx software-specific terms in the
Xilinx Glossary:

http://www.Xilinx.com/company/terms.htm

Xilinx ISE WebPACK

ISE WebPACK design software is the free, downloadable, fully featured front-to-back
FPGA design solution running under Linux, Windows XP, and Windows 7, supporting
the ZedBoard. As part of the ISE Design Suite version 14.4 — WebPACK supports
embedded processing design for the Zyng-7000 AP SoC.

The ISE WebPACK tools include PlanAhead, Xilinx Platform Studio and the Software
Development Kit, amongst others. The WebPACK DVD that is included with the kit may
have a different version, please use the corresponding CTT for that version or install ISE
14.4 via a web download. A complete description of ISE WebPACK is available via this
hyperlink: http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm

PlanAhead Design and Analysis Tools

PlanAhead software provides a central cockpit for design entry in RTL,
synthesis and verification. PlanAhead offers integration with XPS for
embedded processor design (including access to the Xilinx IP catalog), and
SDK to complete the embedded processor software design. Implementation is
achieved through integration with the ISE tool flow. The implementation
flow of your design may be centrally launched from the PlanAhead GUI.

e For more information on the embedded design process as it relates to
XPS, see the "Design Process Overview" in the Embedded System Tools

© Copyright 2013 Xilinx
Page 8 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm
http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm

& XILINX

ALL PROGRAMMABLE

Reference Manual (UG111):
http://www.Xilinx.com/support/documentation/xilinx14 4/est rm.pdf

Note: For this version of the Zynq development tools, direct simulation of
the Processing System is not available.

Xilinx Platform Studio

XPS is the development environment used for designing the hardware
portion of your embedded processor system. You can specify in XPS the
microprocessor, peripherals, and the interconnection of these components
along with their respective detailed configuration.. You can run XPS in batch
mode or using the GUI, which is demonstrated in this guide.

Software Development Kit

The SDK is an integrated development environment, complementary to XPS,
that is used for C/C++ embedded software application creation and
verification. SDK is built on the Eclipse open-source framework. For more
information about the Eclipse development environment, please refer to
http://www.eclipse.org.

Other Components of ISE WebPACK

Other components include:

e Hardware IP for the Xilinx embedded processors
e Drivers and libraries for the embedded software development

e GNU compiler and debugger for C/C++ software development targeting
the ARM Cortex-A9 MPCore in the Zynq Processing System

e Documentation

e Sample projects

1.3 What You Need to Set Up Before Starting

Before discussing the tools in depth, it would be a good idea to make sure they are
installed properly and that the environments you set up match those required for the
"Test Drive" sections of this guide.

© Copyright 2013 Xilinx
Page 9 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

http://www.xilinx.com/support/documentation/xilinx14_4/est_rm.pdf
http://www.eclipse.org/

& XILINX

ALL PROGRAMMABLE

1.3.1 Software Installation Requirements:

1. Xilinx ISE WebPACK software tools

This lab requires version 14.4 of the PlanAhead design tool, and Embedded software
tools (including XPS and SDK) as well as ISim (limited). It is recommended that you
download the single file ISE installation package via the Download Center on the
Xilinx website and choose the System Edition installation option during setup. The
ZedBoard license for the WebPACK edition is discussed and explained later. Apply
the Device Pack update.

2. Xilinx ChipScope Pro Tools

A version of the Xilinx ChipScope Pro tools that supports the ZedBoard is made
available with the kit. ChipScope Pro allows you to probe the internal signals of your
design much as you would with a logic analyzer. This document also covers insertion of
debug cores.

3. Software Licensing

Xilinx software uses FLEXnet licensing. A license is required for ISE WebPACK. A
general WebPACK license does not require a host ID and, therefore, can work on any
computer. However, the ChipScope Pro tools do require a Host ID.

The ZedBoard comes with a voucher entitling you to a special WebPACK license
configuration to run the exercises in this document. If you do not have the voucher, it is
highly recommended for you to generate the 30-Day evaluation license that entitles you
to full software functionalities and device support. Please keep in mind that the 30-Day
license is node locked and will expire after 30 days.

To obtain the special WebPACK license, run the Xilinx License Configuration Manager
(XLCM), which is automatically launched when the installation process concludes. When
XLCM starts, it prompts you to register via the Xilinx Licensing Center online through a
web browser. In the licensing center, enter the ZedBoard voucher’s alphanumeric code to
generate the special node locked license. The generated license will be e-mailed to you.
Save the e-mailed license to a convenient location on your hard drive. With XLCM open,
specify the location of the license file, XLCM then automatically places the WebPACK
license in the proper directory.

4. Serial Terminal Emulation

Certain test drives require the use of a serial terminal emulator external to the SDK. The
exercises have been tested with PUTTY and Tera Term although other terminal utilities
can be used as well. The settings for setting up a session can be found in Figure 2-13.

© Copyright 2013 Xilinx
Page 10 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

1.3.2 Hardware Requirements for this Guide

The ZedBoard is required to complete the tutorial. A second micro USB cable is
required to connect both the USB-JTAG and USB-UART on-board. Alternatively,
you can use the micro USB Type B adapter for a standard Type A connector cable
that is included with the ZedBoard.

© Copyright 2013 Xilinx
Page 11 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

Chapter 2
Embedded System Design Using the Zynq
Processing System

Now that you've been introduced to the Xilinx software tools, you'll begin looking
at how to use it to develop an embedded system using the Zynqg PS.

The Zyng AP SoC consists of an ARM Cortex A9 MPCore PS which includes
various dedicated peripherals as well as a configurable PL. This offering can be
used in three ways:

1. The Zyng PS can be used independently of the PL.

2. Soft IP may be added in the PL and connected to extend the functionality of the
PS. You can use this PS + PL combination to achieve complex and efficient
design on the SoC.

3. Logic in the PL can be designed to operate independently of the PS. However
the PS or JTAG must be used to program the PL.

The design flow is described in Figure 2-1: Design Flow for Zyng.

© Copyright 2013 Xilinx
Page 12 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

3. Configure PS settings
4. Add IP
(exit XPS, back to

1. Launch PlanAhead

2. Add Embedded Source
(launch XPS)

5. Add Top-Level HDL

6. Add Constraints file

7. Generate Bitstream =>

- -

9. Specify hardware
built from PlanAhead
and XPS

10. Add Software

Project & Build => .elf

SDK

I

XPS bit
L |
PlanAhead 11
< >
l—'\ : :
-7 Optional direct next step

11. Program bitstream & .elf into Zynq

ZedBoard

Figure 2-1: Design Flow for Zynq

1. The recommended design and implementation process begins with launching the
PlanAhead tools, which is the central cockpit from which design entry through
bitstream generation is completed.

2. From PlanAhead, select Add an Embedded Source to include the ARM Cortex-
A9 PS in the project. XPS is then automatically launched from PlanAhead.
Selection of the PS and optional addition of PL peripherals occur within XPS.

3. In XPS, configure settings to make the appropriate design decisions such as
selection/de-selection of dedicated PS 1/O peripherals, memory configurations,

clock speeds, etc.

4. At this point, you may also optionally add soft IP from the IP catalog or create
your own customized IP. When finished, close XPS to return to PlanAhead.
5. Back in the PlanAhead environment, generate a top-level HDL wrapper for the

processing system.

6. Ensure that the appropriate PL related design constraints are defined as required
by the tools. If any signal coming to 1/O pin is not defined then the tools will
generate an error during the bitstream generation. Also, do not include pin
constraints which are connected to the dedicated pins as the tools will generate the
error. These constraints would typically be useful to ensure that signals to general
purpose 1/O such as the switches, LEDs, and Push Buttons on the ZedBoard are

Page 13

© Copyright 2013 Xilinx

Zynq ZedBoard Concepts, Tools, and Techniques

3/22/2013

& XILINX

ALL PROGRAMMABLE

10.

11.

routed appropriately. This is done via the creation/addition of a .ucf constraints
file in the PlanAhead project.

Generate the bitstream for configuring the logic in the PL if soft peripherals or
other HDL are included in the design, or if hard peripheral 10 was routed through
the PL. At this stage, the hardware has been defined in <system.xml>, and if
necessary a bitstream <system.bit> has been generated. At this point, the
bitstream could be programmed into the FPGA, or it could be done from within
SDK.

Now that the hardware portion of the embedded system design has been built,
export it to SDK to create the software design. (A convenient method to ensure
that the hardware for this design is automatically integrated with the software
portion is achieved by Exporting the Hardware from PlanAhead to SDK.)

In SDK, add a software project to associate with the hardware design exported
from PlanAhead.

Within SDK, for a standalone application (no operating system) create a Board
Support Package (BSP) based on the hardware platform and then develop your
user application. Once compiled, a <designname.elf> is generated.

The combination of the optional bitstream and the .elf file together programs the
hardware and the software functionality into the Zynqg device on your ZedBoard.

2.1 Embedded System Construction

Creation of a Zynq system design involves configuring the PS to select appropriate
peripherals. As long as the selected PS hard peripherals use Multiplexed 10 (MIO)
connections , and no additional logic or IP is built or routed through the PL, no
bitstream is required. This chapter guides you through creating one such design,
where only the PS is used.

2.1.1

o Take a Test Drive! Creating a New Embedded Project With a
Zynq Processing System

For this test drive, you start the ISE PlanAhead design and analysis tool and create a
project with an embedded processor system as the top level.

Start the PlanAhead tool,

1.
2.

Select Create New Project to open the New Project wizard.

Use the information in the table below to make your selections in the wizard
screens.

© Copyright 2013 Xilinx

Page 14 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE«

Wizard Screen System Property Setting or Command to Use
Project Name Project name Specify the project name.
Project location Specify the directory in which to store

the project files.

Create Project Subdirectory Leave this checked.

Project Type

Specify the type of sources for Use the default selection, RTL Project.
your design. You can start with
RTL or a synthesized EDIF

Add Sources

Do not make any changes on this screen.

Add Existing IP

Do not make any changes on this screen.

Add Constraints

Do not make any changes on this screen.

Default Part

Specify Select Boards.

Board Select ZedBoard Zynq Evaluation and
Development Kit

New Project Summary

Project summary Review the project summary before
clicking Finish to create the project.

f E Mew Project

Default Part

1
i Parts
& Boards

Choose a default zilinx part or board For your project, This can be changed later, g@?

Faffily | Zyng-7000
Paggage | All Remaining

Speed gide | -1
==Teset Al Fiters
Search: | O
I/ Pin Available LuT " Elock.
Eosrd Part Counk I0Bs Elements plohices RAMs
B 7¥MQ-7 2702 Evaluation Board i xc7z020clg454-1 454

200

pes (| | | |

1 E @

[< Back][Mext =] Finish

Page 15

Figure 2-2: New Project Wizard Part Selection

© Copyright 2013 Xilinx
Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

When you click Finish, the New Project wizard closes and the project you just
created opens in the PlanAhead design tool.

] project 1 - [C/XUP_Apps_Projecis/IT Pla
File Edit Flow Tools Window Layout

w2 @ |9 D ¥ B KL B[S 0efaut Layout - K| ® Ready
Flow Navigator «| | Project Manager - project_1 X
A= — O x| [Eerojectsummary X o x
= —~
4 Project Manager - 5 Project Settings Edt (=) () Messages
15 Project Settings | projectrame: project_t sunmary:
54 Add S
LF 1P Catalog
([} Run Beha:
2 Implementation
4 RTL Analysis L
> 5% Open Elaborated Design Ststus: 3> Ready Status: = Ready
Part: xcT2020clgéB4-1 Part xc72020clgéBd-1
Straegy: Planahead Defaults Strategy: 1SE Defauls
Flow: 45T Flow: =3
> @ Open Synthesized Design
ibraries | Compile Order
4 Implementation @ Tomplates
15 Implementation Settings o .
ies —ou
[» Run Implementation = ing information is not available.
> [Open Implemented Design halind < | Hext: Run Implementation
4 Program and Debug
®
£ pe Analyzer
b Launch MPACT
Design Runs O x
| hame Part Corstraints Strategy Stahus Progress Start Elapsed Lkl(%) FMax (MH) TimingScore Unrouted Description
| == synth 1 x72020cig484-L constrs_L Flanahead Defaults (XST 14) Not started 0% Planahead Defaults (45T defaul
= ~= impl_L %c72020clg484-1 constrs_L 15E Defaults (ISE 14) Motstated T 0% ISE Defaults, including packing r
=
]
»
Ll
3
'8

3 Tel Console: | © Messages | B Log | & Reports, 1% Design Runs

Figure 2-3: PlanAhead GUI
You'll now use the Add Sources wizard to create an embedded processor project.

1. Click Add Sources in the Project Manager.

The Add Sources wizard opens.

2. Select the Add or Create Embedded Sources option and click Next.
3. In the Add or Create Embedded Source window, click Create Sub-Design.

4. Type a name for the module and click OK. For this example, use the name:
system.

5. Click Finish.
6. The module you created displays in the sources list.

The PlanAhead design tool creates your embedded design source project. It
recognizes that you have an embedded processor system and starts XPS.

© Copyright 2013 Xilinx
Page 16 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

Continuing Your Design in XPS
You can design a new embedded system in XPS using either of two methods:
e Using the Base System Builder (BSB) Wizard

In the BSB Wizard, you can select and configure and add default peripherals to the
fabric. Xilinx recommends using the BSB wizard to create the foundation for any
new embedded design project.

e Creating a Blank Project

With this option, you must manually add Processing System 7 to your design and
configure the 1/0O interface.

2.1.1.1 Designing a New Embedded System Using the BSB Wizard

1. The dialog box opens, and asks if you want to create a Base System using the
BSB Wizard. Select Yes.

v R

This project appears to be a hlank zyng project. Do you want to create a Base
Iystern using the BSB Wizard?

e)

Figure 2-4: Platform Studio dialog box

The first window of the BSB asks you to elect whether to create an AXI-based or
PLB-based system.

© Copyright 2013 Xilinx
Page 17 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE«

MNews Project

Project File [Ctlzedboard-144project_1iproject_1.srcsisources_1edkimodule_1imodule_1.xmp Browse ...

Select an Interconnect Type
@ A% System

Axlis an interface standard recently adopted by Xilinx as the standard interface used For all current and

future wersions of Xilinx IP and toal flows. Details on X1 can be Found in the XTI Reference Guide on
wiline. com.

FLE Syskem
PLE is the legacy bus standard used by ¥ilinx that supports current FPGA Families, incuding Spartane and

Wirtexe, PLE IP will not suppart newer FPGA Families, so is not recommend For new designs that may

migrate ko Future FRGA Families, Details on PLE can be found in the PLEw46 Interface Simplifications
document on xilin. can.

Select Existing .bsh Settings File{saved From previous session)

Browse ..,

Set Project Peripheral Repositary Search Path

Browse ..,

[

)/

| concel |

Figure 2-5: Create New Project BSB Wizard
7. Select AXI System and click OK.

In the Base System Builder wizard, create a project using the settings described

in the table. Where a setting or command has not been specified, accept the
default values.

© Copyright 2013 Xilinx
Page 18 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE«

Wizard Screen

System Property

Setting or Command to Use

Board and System
Selection

Board

Use the default option to create a system
for ZedBoard Zynq Evaluation and
Development Kit.

Note: This is pre-populated because you
selected this board in the PlanAhead tool.

Board Configuration

This information is pre-populated based
on your board selection..

Select a System

Zynq Procesing System 7

Peripheral
Configuration

Select and Configure Peripherals

Remove all peripherals from the list by
selecting each one and clicking Remove
or clicking the Select All button followed
by clicking the Remove button.

Base System Builder -- AXI fl

Peripheral Configuration

To add a peripheral, drag it from the "Available Peripherals” list to the Included Peripherals list. To configure a core parameter, click on the peripheral.

Select and Configure Peripherals

Available Peripherals

Included Peripherals For Processing System?

Select &l

P.eripheraINames Core Parameter
10 Devices : ETMs_SBits
B Ir?tern.al Peripherals Core axi_gpio
- ax?_b. rarr_ctrl add = Use Interrupt
ax?_t?mebase_wdt LEDs_8Rits
----- axi_timer Core: axi_gpio
Suis_BBits
Core: axi_gpio
’ = Back] [Finish J ’ Cancel

Figure 2-6: Peripheral Configuration Wizard

Page 19

© Copyright 2013 Xilinx

Zynq ZedBoard Concepts, Tools, and Techniques

3/22/2013

& XILINX

ALL PROGRAMMABLE

9. Click Finish.

10. Close the XPS window since we do not want to update, remove or add
peripherals. The active PlanAhead tool session updates itself with the project
settings.

2.1.1.2 Designing a New Embedded System Using a Blank Project

If you have already created a default embedded system using the BSB wizard, skip this

section and move on to the following section, Exporting to SDK.

1. In the dialog box that opens to ask if you want to create a Base System using the
BSB wizard, click No.

A dialog box opens, asking if you want to add one processing_system7 4.0.2.a
instance to your design.

2. Click Yes to add the processor instance.
3. Click the Bus Interfaces tab. Notice that processing_system7 was added.

& Xilinx Platform Studio (EDK_P.49d) - CAXUP_Apps Projects\CTT-PlanAhead144-32\project_\project_Lsr
@ File Edit View Project Hardware Debug Window Help BEE

B £
1P Catalog coa x|, . Ic g
EE] % :
Description PVe| g @
o £ EDKInstall e 9

Znalog > ts

At |® LEDs_BBits

Bus o— | 5w _sBits

- Clo rrupt

Comi -Speed

[w-Speed

DA,

[Debu

FPG.

Gen

Inte

- Me

2t

&

Pre

Proj

3
. n v | Legend
MiMaster @Slave diMaster/Slave B Target Initiator @ Connected UUnconnected I Monitor
Search IP Catalog: Clear TrProduction [License (paid) [License (eval) <iLocal ZiPre Production B2Beta E¥Development
' D

|@ Fropct | @ 1P catalog | e System Assenbly iew g[E Design Summary & i

Warnings C=l-E

Figure 2-7:Processing System 7 in the Bus Interface tab

4. Click the Zynqg tab in the System Assembly View to open the Zynq Processing
System block diagram.

© Copyright 2013 Xilinx
Page 20 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE«

Zyng | Bus Interfaces | Ports I Addresses |

Q@ « = [

He_ID Import Export Summary

Processing System (PS)

e
IO Peripherals General T Application Processor Unit (APU)
Settings
MEQON™!FPU Engine NEQN™] FPU Engine
Bank0
MIO < Cortex™-A9 Cortex™ -A9
16 - Syst MMU MPCore™ MmMU MPCeore™
(sa 2 Lovael;n =il cry
Control 32KB | 32KB D 32KBI 32KBD
Regs Cache Cache Cache Cache
o *' » Gl Snoop Control Unit
MUX DMAE
- S " SR aret 512 KB L2 Cache & Controller
£ > oem 256 KB OCM
4
1
T

BootROM

Interconnect
Bank1

MIC FLASH Me mary -
(63:16) Interfaces - < DAP
Memorylnterfaces

o — -
< DEVC | Program mable DDR2i3, LPDDR2
C Logicto Memery Controller
y Int: ct

Central
Interconne ct

_— ;
hA A
DMA
- pyne [E[E[EEE]
|a | 3 [10[11
Input Clock Clock DHOE
—%-rq—‘—>l.ﬂ.l ok FEEE | Ghiss
Extended MIO 32bGP 32bGP oMA Config | IRQ High Performance XADC |
(EMIO) PStoPL AX| AXI Channels AES) AX] 32bi64b Slave
Clock Ports Master Slave SHA P
FPorts Ports
BTX s Select
e AMBA® Connection Legend Programmable Logic (PL) [
1z Arrow direction shows control, Data flows both directions
bps) Configurable AXI3 32 bitié4 bit BCle
AXI3 64 bitF AXI3 32 bit] AHB 32 bit f APB 32 bit Gen2

Figure 2-8: System Assembly View of the Zynq Processing System Block Diagram

Review the contents of the block diagram. The green colored blocks in the Zynq
Processing System diagram are items that are configurable. You can click a green
block to open the coordinating configuration window.

5. Click the Import Zynqg Configurations button -

The Import Zyng Configurations dialog box opens.

6. Select a configuration template file for ZedBoard. The template selected by
default is the one in the installation path on your local machine that corresponds

to the ZedBoard.

© Copyright 2013 Xilinx
Page 21 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

Select Configuration Template

Syskem Template (Configurations available in the installed area)

ZedBoard Development Board Ternplate

ZCT02 Developrent Board Termplate

~—

|

i

ZCT06 Developrent Board Termplate I

User Template (Configurations created by User) :

Summary of selected Configuration:

Description o

Default configuration for ZedBoard Created 238 Aug 2012 See more at v, zedboard. org Change Log 28 Aug 2012 - Changed DDR3 part
to MT411125M16 HA-15E

Preset Info

Device Size xc?z020
Package clgda4
Speed Grade -1

Zynq PS configuration
Peripheral |5tatus ISignaI Group| MIO | Freq
fzamo Disabled | [[
a1 Disabled | [[

EMETO Enabled | Hefault 10 16 .. 27/[1000 MBPS

[GRP_MDIO 1052, 53

EMET1 Disabled

T [

| o] [

Figure 2-9: Selecting ZedBoard Template
7. Click OK.

8. In the confirmation window that opens to verify that the Zynq M10
Configuration and Design will be updated, click Yes.

9. Note the change to the Zynqg block diagram. The 1/O Peripherals become active.

© Copyright 2013 Xilinx
Page 22 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

Zynq | Businterfaces | Ports | Addresses |

«@ - -

Halp Import Export Summary

Processing System (PS)
O Peripherals I S l Resetl Application Processor Unit (APU) |
H NEOQMN™/FPU Engine NEON™/FPU Engine]
TTC

System
Level
Control
Regs

—
] Gic Snoop Control Unit
- — - Slave
* 512 KB L2 Cache & Controller FPort
—
=B O
= 256 KB OCM |
Interconne

PCore™ MMU

MMU

3zKB | 3z2KB D 3zKBI 3z2KB D G4b
Cache Cache Cache

L e =
TR 1 L S
MO FLASH Memory ' 3
(53:16) interfaces -—
= Interfaces
- £ v L
-« oevc |] DDR2/3. LFDDR2
—— i Controller
FY te t
DMA [sync
Input Clock
ToEFea S v ¥ [OI[=1=]
Extended MIO 3ZbGP 3ZbGP oma config | IRQ High Performance XADC I
(EMIO) PSto PL Ax1 AXI Channels AESS AXI 3Zbi64b Slave _—
Clock Ports Master Slave SHA Ports
Ports Ports
e _ Select
AME A® Connection Legend Programmable Logic (PL) o

= Arrow direction shows control, Data flows both directions
bp =) Configurable AXI3 3Z bit64 bit

PCle
AXI3 84 bit I AXI3 32 bitJ AHB 32 bit J AFPBE 32 bit |

Genz

& System Assembly View | = Design Summary & Graphical Design Yiew

Figure 2-10: Updated Zyng Block Diagram
10. In the block diagram, click the green 1/O Peripherals box.

Many peripherals are now enabled in the Processing System with some MIO pins
assigned to them per the ZedBoard layout. For example, UARTL is enabled and
UARTO is disabled. This is because UARTL is connected to the USB - UART
connector through UART to the USB converter chip on the ZedBoard.

11. Close the Zynq PS MIO Configurations window.

12. Close the XPS window. The active PlanAhead tool session updates with the
project settings.

2.1.2 o Take a Test Drive! Exporting to SDK
In this test drive, you will launch SDK from the PlanAhead tool.

1. Under Design Sources in the Sources pane, select and right-click system
(system.xmp) and select Create Top HDL.PlanAhead defaults to Verilog. One
can choose VHDL if desired. For this test drive, the default setting will be kept.

PlanAhead generates the system_stub.v top-level module for the design.
2. In the PlanAhead tool, Select File > Export > Export Hardware for SDK.

The Export Hardware dialog box opens. By default, the Export Hardware check
box is checked.

Check the Launch SDK check box. Leave everything else as default.
4. Click OK; SDK opens.

© Copyright 2013 Xilinx
Page 23 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

Notice that when SDK launches, the hardware description file is automatically read
in. The system.xml tab shows the address map for the entire Processing System.

File Edit Source Refactor Navigate S n Praject XilinxTools Window Help
il O #E & g -a-d-e- MUAEE R R Rl I AT MG = ([Ec=)
[25 Project Explorer 2 = 8| g systemaml 3 SO|EEou R\ @M | =8
=| Q;‘ L A ~ | |8 outling is not available.

module_1_hw_platform Hardware Platform Specification

(@ module_1_hw_platform
Design Information
Target FPGA Device: xcTa020

Created \With: EDK14.4
Created On: Thu Feb 2117:57:02 2013

Address Map for processor ps7_cortexa9 0

psT_uart_1 0xe0001000 0x=0001££¢
ps7_afiL0 0=£8008000 0x£8003££¢
psT_afi_l U=£B003000 0xEBO0IELE
psT_afi_2 Ux£B8002000 0xf800afEE
psT_afi_3 DxfB00B000 0xfB00BEfE
ps7_sd_0 Dx=0100000 0z=0100££ £
0=£8001000 0=£B001FEE

0x=000b000 0x=000bE£ £
0x=0002000 0x=0002£££
0x=000d000 0xe000df£ £
0xfc000000 Oxfcfiffff
000100000 0x1fEE£EEE
0xe000a000 0xe000afff
0x£3006000 0xEB006£EE
0x£8007000 0x£B007£EE
0x£8003000 0xfB003FEE
020200000 0x=0200£££
000000000 0x0002££££
OxfEE£0000 OxfEEEEAEE
0x£8£00100 0x£BEODLEE
0x£8£00600 0xfBEO0GLE
0xfBE00620 0xfBE006EE
0x£8000000 0=f8000££ £
0x£8004000 0x£5004FEE
0x41200000 0x4120££€£
0241220000 0x4122F£££
0241240000 0x4124F££F

Ovenvies

[E Problems [& Tasks B Console 32 _E Properties| 48 Terminal x| fE~-5-70
SDKLog
17:57:15 INFO : Processing command line option -hwspec C:/zedboard-144/project 1/project 1.sdk/SDKE/SDE_Export/hw/module 1.xml.

Figure 2-11: Address Map in SDK system.xml Tab

What Just Happened?

The PlanAhead design tool exported the Hardware Platform Specification for your
design (system.xml in this example) to SDK. In addition to system.xml, there are
four more files relevant to SDK. They are ps7_init.c, ps7_init.h, ps7_init.tcl, and
ps7_init.html.

The system.xml file opens by default when SDK is launched. The address map of
your system read from this file is shown by default in the SDK window.

The ps7_init.c and ps7_init.h files contain the initialization code for the Zynq
Processing System and initialization settings for DDR, clocks, plls, and MI10s. SDK
uses these settings when initializing the processing system so that applications can
be run on top of the processing system.

What's Next?

Now you can start developing the software for your project using SDK. The next
sections help you create a software application for your hardware platform.

© Copyright 2013 Xilinx
Page 24 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE«

2.1.3 s Take a Test Drive! Running the “Hello World” Application
1. Connect the 12V AC/DC converter power cable to the ZedBoard barrel jack.

2. Connect a USB micro cable between the Windows Host machine and the
ZedBoard JTAG (J17).

3. Connect a USB micro cable to the USB UART connector (J14) on the ZedBoard
with the Windows Host machine. This is used for USB to serial transfer.

4. Power on the board using the switch indicated in Figure 2-12: ZedBoard Power
switch and Jumper settings.

If this is your first time starting up the ZedBoard with the USB UART connected to
your Windows PC, you may need to install the Cypress USB-to-UART device drivers.
Please refer to the Cypress USB-to-UART Setup Guide on ZedBoard.org for more
information:

http://www.zedboard.org/documentation

IMPORTANT: Ensure that jumpers JP7 to JP11 are set as shown in the figure for
the JTAG configuration mode.

[Bki'g'g'éL” 1 z

PB200-248 REU'B

Figure 2-12: ZedBoard Power switch and Jumper settings

5. Open SDK in case it is not already open.

© Copyright 2013 Xilinx
Page 25 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

http://www.zedboard.org/documentation

& XILINX

ALL PROGRAMMABLE.

6. Open a serial communication utility for the COM port assigned on your
system.

Note: The default configuration for Zynqg Processing System is: Baud rate
115200; 8 bit; Parity: none; Stop: 1 bit; Flow control: none. As mentioned in the
Software Requirements section, third party serial terminal emulators can be used
in place of the SDK terminal and is required for certain test drives.

To open a serial communication terminal in SDK:

Select Window > Show view > Terminal and click in the console view area.
Configure it with the parameters as shown below (replacing COM7 with the
appropriate COM port number, verify using Control Panel > Device Manager).

@ New Terminal Cdﬁnection ﬁ

View Settings:

View Title: Terminal 1

Connection Type:

) ISerial v |
Settings:
Port: com7 v

§ Baud Rate: 115200 v !
Data Bits: 8 -
Stop Bits: 1 '
Parity: None v |
Flow Control: |None v

Timeout (sec): 5

OK I Cancel

Fighre 2-13:Serial Terminal Settings‘

7. In SDK, select File > New > Application Project.
This will open the New Project Wizard.

8. Use the information in the table below to make your selections on the wizard
screens.

© Copyright 2013 Xilinx
Page 26 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

Wizard Screen System Property Setting or Command to USe
Application Project Project name Hello_world

Use default location Check this option

Hardware Platform system_hw_platform

Processor ps7_cortexa9 0

OS platform Standalone

Language C

Board Support Package Create New : Hello_world_bsp

Click Next

Templates Available Templates Hello World

Application Project L
Create a managed make application project. @

Project name: Hello_worldl

Uze default location
Chzedboard-143\project 1\ project_1.sdk\SDKVSDK_ExportiH Browse...

default
Target Hardware
Hardware Platfarm ’system_hw_platform v]
Processor [ps7_cortexad_0 - l
Target Software
Q5 Platfarm ’Standalone v]
Language @C @ Ces

Board Support Package @ Create Mew Hello_world_bsp

Use existing

@:‘ < Back [Mext »] [Finish] l Cancel

L — = — — —

Figure 2-14:Application Project Wizard

© Copyright 2013 Xilinx
Page 27 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

Mew Project l E] e

Templates

=
Create one of the available templates to generate a fully-functioning \&
application project.

Available Templates:

Dhrystone Let's say 'Hello World' in C. -
Empty Application

IwlP Echo Server
Memory Tests

Peripheral Tests |
Zyng FSBL

Mext = [Finish] ’ Cancel l

Figure 2-15:Hello World from Available Templates
9. When you click Finish, the New Project wizard closes.

By doing so, the Hello_world application project and Hello_world_bsp BSP
project get created under the project explorer. Both the Hello_world application,
and its BSP are compiled automatically and the .elf file is generated. You can
open the newly generated helloworld.c file to view the C code in the

Hello_World application under the src folder. Notice it looks like every other
Hello World program.

10. Watch the messages in the Console window. When the project is successfully
built, you will see Finished building: Hello_world.elf.size.

© Copyright 2013 Xilinx
Page 28 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

€9 C/C++ - Hello_world_bsp/system.mss - Xilinx
Fil: Edit Source Refactor Mavigate Se
| B 2E e

[Praject Bxplorer &2 = Ol systemaml ([, systemmss 22
BR|Y~

Window Help

R-B- H-0-QU- S oo

Hello_world_bsp Board Support Package

Wadify this BSP's Settings

Target Information
This Bo

mpiled to run on the following target.

oard- Lad\praject_T\project_Lsdk\SDKASDK_Exportimodule_1_h_platformbsystern xmi
7_corterad 0

Operating System

Board Support Package O,
Name: standalane

3082

Standalone is a simple, low-level software layer. It provides access to basic pracessor features such as caches, interrupts and exceptions as well as the basic features of a hasted emvironment, such as

standard input and autput, profiling, abort and exit,

standalone v3 08 o

the Board Support Package.
btns_Sbits gpio Documentation Examples
leds_Bbits gpio Documentation Examples

ps_ethern ples
psT_gpie_) gpiops
psT_iop_bus_config 0 generic
ps7_9spi0 qspips Documentation Excamples

& Tasks [Bl Console £3 . Properties | (& Terminal O B EEEk#B-r5--0

" T
WL, --start-group, -1¥il,-1gce, -1¢, --end-group
inished building target: Hello_world.elf

nvoking: ARN Print Size
Im-xilink-esbi-sige Hello_world.elf |tee "Hello world.elf.size”

text data bes dec hex filename
47980 1096 27736 76812 1zcOe Hello_world.elf
IR RY IOV TAR PR T

Figure 2-16: Successful Build
11. The application and its BSP are both compiled and the .elf file is generated.
12. Right-click Hello_world and select Run as > Run Configurations.
13. Right-click Xilinx C/C++ ELF and click New.
14. The new run configuration is created named Hello_world Debug.

The configurations associated with the application are pre-populated in the Main
tab of the launch configurations.

15. Click the Device Initialization tab in the launch configurations and check the
settings here.

Notice that there is a configuration path to the initialization TCL file (
ps7_init.tcl). This is the file that was generated when you imported your design
into SDK; it contains the initialization information for the processing system
when using JTAG.

16. The STDIO Connection tab is available in the launch configurations settings.
You can use this to have your STDIO connected to the console. Note that both
STDIO and Terminal connections are not permitted to use the same COM
port. We will not use this now because we have already launched a serial
communication utility. There are more options in launch configurations but
we will focus on them later.

© Copyright 2013 Xilinx
Page 29 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

17.Click Run.
18."Hello World" appears on the serial communication terminal.

C/C++ - Xilinx_C_HelloWorld_bsp/system.mss - Xilinx SDK ‘ T Ql rh l =RRE gi
File Edit Source Refactor Navigate Search Run Project XilinxTools Window Help
[| ‘BiEiE @ 8-E-@ A8 B0 i@ = oo
- - P -
[Praject Explorer &2 = O ([system.mss &8 % = OB out B\ @M | = O3 Welcome & =0
28 | v ~ | An outl t available. c oA
% || Xilinx_C_Helloworld_bsp Board Sy~ |7 ¢4tine s not avatazie Loa A
{3 system_hw_platform -

[peT_init.c N il

p<T_inith idodiythis BSpisSettinas G Xilinx SDK

@ p<T_inithtml

[E psT_init.tcl Target Information

1 systemxml This Board Support Package is compiled to run on Kilinx SDK is based on Eclipse 3.6.2 and |
15 Xilinx_C_HelloWorld

Hardware Specification: Chzedboard-143\project |

g"‘"b Binaries Target Processor ps/_cortexad_0 New to SDK?
[Includes
= Debug Operating System You can get started by clicking File —= #
= src Orwatch a 5 minute screencast demonsti
3 iling_C_HelloWorld_bsp Board Support Package O5. |
@ngihwip\atfmm Name: standalone 3
Version: 3.07.a
Description: Standalone is a simple, low-level Documentation
such as caches, interrupts and ex
such a5 standard input and outp = Getting Started with Xilinx SDK
Documentation: standalone v3 07 a « EDK Concepis, Tools and Technic
+ Migrating from older versions of S
Peripheral Drivers + Frequently asked questions

Nrivers nresent in the Rnard Sunnart Packane.
« Il ’
Known Issues
Overview | Source
— iy + Knownissues in SDK
+ Xilinx Answer Record Search

Serial: (COM29, 115200, 8, 1, None, None - CONNECTED)
- i .
ll=lE) Questions, Comments..
Hello World
» Xilinx Forums

Xilinx Technical Support

4 n b < [b

g* Serial (COM29, 115200, 8, 1, Mone, Mone - CONNECTED)

Figure 2-17:""Hello World" on the Serial Terminal
19. Close SDK.

Note: There was no bitstream download required for the above software application
on the ZedBoard. The ARM Cortex-A9 dual core is already present on the board.
Basic initialization of this system to run a simple application is done by the device
initialization TCL script.

2.1.4 Additional Information

Board Support Package

The Board Support Package (BSP) is the support code for a given hardware platform
or board that initializes the board at power up for software applications to execute
on the platform. It can be specific to some operating systems with bootloader and
device drivers.

Standalone OS

Standalone applications do not utilize an Operating System (OS). They are
sometimes also referred to as bare-metal applications. Standalone applications have
access to basic processor features such as caches, interrupts, exceptions as well as

© Copyright 2013 Xilinx
Page 30 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE
other simple features specific to the processor. These basic features include standard

input/output, profiling, abort, and exit. It is a single threaded semi-hosted
environment.

The application you ran in this chapter was created on top of a BSP built for the
ZedBoard.

© Copyright 2013 Xilinx
Page 31 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

Chapter 3
Embedded System Design Using the Zynq
Processing System and Programmable
Logic

One of the unique features of using the Zyng AP SoC as an embedded design
platform is in using the available PL in addition to the Zynq PS for its ARM Cortex-
A9 MPCore processing system.

In this chapter we will be creating a design with:

e PL-based AXI GPIO and AXI Timer with interrupt from the PL to PS section
e ChipScope IP instantiated in the PL

e Zyng PS GPIO pin connected through the PL pins routed via the Extended MIO
(EMIO) interface

The flow of this chapter is similar to that in Chapter 2. If you have skipped that
chapter, you might want to look at it because we will refer to it many times in this
chapter.

3.1 Adding soft IP in the PL to interface with the Zyng PS

Complex soft peripherals can be added into the PL to be tightly coupled with the
Zynq PS. This section covers a simple example with AXI GPIO, AXI Timer with
interrupt, PS section GP1O pin connected to a PL side pin via the EMIO interface,
and ChipScope instantiation for proof of concept.

The block diagram for the system is as shown in Figure 3-1: Block Diagram.

© Copyright 2013 Xilinx
Page 32 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

PS Section

UART

LED
LDS

CLK

G temspt ntrwer I

32b GP AXI Master Port

AXIINTERCONNECT

Interrupt I

AXI Timer

PL Section

BTNR BTNU

Figure 3-1: Block Diagram
This system covers the following connections:

e The PL-side AXI GPIO has only a 1 bit channel and it is connected to the push-
button 'BTNU' on the ZedBoard

e The PS section GPIO also has a 1 bit interface routed to PL pin via the EMIO
interface and connected to the push-button 'BTNR' on the board

e In the PS section another 1 bit GPIO is connected to the LED 'LD9' on board
which is on the MIO port

e An AXI timer interrupt is connected from PL to PS section interrupt
controller. The timer starts when the user presses any of the selected push
buttons on board and toggles the LED 'LD9' on board

You will write application software, which takes input from the user to select the
push button on the board and waits for the user to press that particular push button.
When the push button is pressed, the timer starts automatically, turns OFF the LED
and waits for the timer interrupt to happen. After the Timer Interrupts, the LED
switches ON and execution starts again, and it waits for a valid selection from the
user.

© Copyright 2013 Xilinx
Page 33 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

You will add the ChipScope Integrated Controller (ICON) and AXI Monitor IPs to
the design so that in a later section you can learn how to debug hardware using the
AXI monitor.

The sections of Chapter 2 are valid for this design flow also. You’ll use the system
created in that chapter and pick up the procedure following 2.1.1 Take a Test
Drive! Creating a New Embedded Project With a Zynq Processing System.

3.1.1 s Take a Test Drive! Check Functionality of IP instantiated in the
PL

In this test drive, you’ll check the functionality of the AXI GPIO, AXI Timer with
interrupt instantiated in PL and EMIO interface.
1. Inthe PlanAhead tool Sources pane, invoke XPS by double-clicking system_i-
system(system.xmp).
This is the embedded source you created in section 2.1.1.
2. In the XPS System Assembly View, click the Bus Interfaces tab.

3. From the IP catalog, expand General Purpose 10 and double-click AXI
General Purpose 10 to add it.

A message appears asking if you want to add the axi_gpio 1.01.b IP instance to
your design.

4. Click Yes.
The configuration window for GPIO opens.

5. Expand Channel 1 to view configuration parameters for channel 1.

6. Notice GP1O Data Channel Width with value 32. Change it to 1 as your
design needs only one bit of input to work. Leave all other parameters as
they are.

7. Click OK.

A message window opens with the message "axi_gpio IP with version number
1.01.b is instantiated with name axi_gpio_0". It will ask you to determine to
which processor to connect. Remember you are designing with a dual core ARM

processor. The message also says XPS will make the Bus Interface Connection,
assign the address, and make 10 ports external.

The default choice of processor is "processing_system7_0". Do not change this.
8. Click OK.

There are a few connections that are not done automatically and must be done
manually.

© Copyright 2013 Xilinx
Page 34 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

Note: The AXI interconnect automatically gets instantiated between the PL IPs
and the PS Section’s Interconnect. In this example, AXI GPIO is connected to
PS through AXI interconnect.

9. Inthe IP Catalog, expand DMA and Timer and double-click the AXI
Timer/Counter IP to add it.

A dialog box appears asking if you want to add the axi_timer_1.03.a IP instance
to your design.

10. Click Yes.

The configuration window for axi_timer_1.03.a opens. Leave all parameters as
they are.

11. Click OK.

A message window opens with the message "axi_timer IP with version number
1.03.a is instantiated with name axi_timer_0." It will ask you to determine to
which processor to connect. Remember you are designing with a dual core ARM
processor. The message also says XPS will make the Bus Interface Connection,
assign the address, and make 10 ports external.

The default choice of processor is "processing_system7_0". Do not change this.
12.Click OK.

You’ll connect the AXI timer’s Interrupt port to the PS section’s interrupt
manually in this section.

13.In the IP Catalog, expand Debug and add two IPs to the design: ChipScope
AXI Monitor and ChipScope Integrated Controller. Do not make changes
to the configuration of either IP.

14. Click the Ports tab, which lists the IPs and their ports. Expand
axi_interconnect_1, axi_gpio_0, axi_timer_0, chipscope_axi_monitor_0, and
chipscope_icon_0.

15. Review the following IP connections. If any of these aren’t already
connected, connect them now.

© Copyright 2013 Xilinx
Page 35 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

IP

Port

Connection

axi_interconnect_1

INTERCONNECT_ACLK

processing_system7_0 : FCLK_CLKO

INTERCONNECT_ARESETN

processing_system7_0::FCLK_RESETO_N

axi_gpio_0 (BUS_IF) S_AXI::S_AXI_ACLK processing_system7_0 : FCLK_CLKO
(10_IF) gpio_0::GPIO_IO External Ports
::axi_gpio_0_GPIO_IO _pin
axi_timer_0 (BUS_IF) processing_system7_0: FCLK_CLKO

S_AXI_::S_AXI_ACLK

Chipscope_axi_monitor_0

CHIPSCOPE_ICON_CONTROL

chipscope_icon_0 ::control0

(BUS_IF) MON_AXI::
MON_AXI_ACLK

processing_system7_0: FCLK_CLKO

Chipscope_icon_0

Control0

Chipscope_axi_monitor0::CHIPSCOPE_I
CON_CONTROL

Your Ports tab should be similar to Figure 3-2: Completed Port Connections.

(£| Zynq | Bus Interfaces | Ports | Addresses | (&) =] B
MName Connected Port Met Direction Range
i External Ports :
= axi_interconnect 1

INTERCOMMNECT_ACLK processing_system7_0:FCLEK_CLKD #|processing_system7_0_FCLK_CLKD =1
INTERCOMMECT_ARESETM processing_systern7_0:FCLK_RESETO_M J{ processing_systemn?_0_FCLK_RESETO_N El 1
[T processing_systemis U
EH axi_gpio 0
=1 (BUS_IF) §_AXT Connected to BUS axi_interconnect 1 [+l Connected to BUS axi_interconnect 1 [+]
S_AKT ACLK processing_systern7_0:FCLK_CLKD # |processing_system7_0_FCLK_CLKD [=]1
=+ (10_IF) gpio_0 Connected to External Ports [+ Connected to External Ports [=]
GPIO_I01 #|No Connection [=]1
GPIO_I0_O #|MNo Connection =] 0
GPIO_IO_T _#|Mo Connection [=] O
GPIO_IO External Ports:axi_gpio_0_GPIO_IO_pin & |axi_gpio_0_GPIO_IO El 10
g e)
CaptureTrigd # Mo Connection [=]1
CaptureTrigl # No Connection [=]1
GenerateOut) # Mo Connection [=] O
GenerateQutl J{ Mo Connection =] 0
PWIMO # Mo Connection [=] O
Interrupt J{ Mo Connection =lo
Freeze # Mo Connection [=]1
= (BUSIF) 5_AXD Connected to BUS axi_interconnect_1 w | Connected to BUS axi_interconnect_1 El
S_AML_ACLK processing_system7_0:FCLK_CLKD #|processing_system7_0_FCLK_CLKO [=]1
[T CHIPSCOPE_ QXL monitor U
CHIPSCOPE_ICOM_CONTROL chipscope_icon_0:controld J_f; chipscope_icon_0_control) El I [35:0]
RESET #|No Connection [=]1
MOMN_AXT_ TRIG_OUT J_f; Mo Connection =] o
[=}- (BUS_IF) MON_AXT Mot connected to BUS or External Ports E| Mot connected to BUS or Bxternal Ports EI
MOMN_AXT ACLK processing_system7_0uFCLE CLED s processing_systern?_0_FCLE_CLKD Ell
E chipscope_icon_0 B
controld chipscope_axi_monitor_0:CHIPSCOPE_ICON_CONTROL J_f; chipscope_icon_0_control) El o} [35:0]
] 1 b
Figure 3-2:Completed Port Connections
© Copyright 2013 Xilinx
Page 36 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

16. Collapse all IPs and expand processing_system7_0. If the following port
connection is not made, do it now. It should look like Figure 3-
3:Processing_system7_0 Expanded and M_AXI_GPO_ACLK Connected.

IP

Port

Connection

Processing_system7_0

M_AXI_GPO_ACLK

(BUS_IF) M_AXI_GPO::

processing_system7_0 :: FCLK_CLKO

+| Zyng | Bus Interfaces | Ports

| Addresses

&)= B

MName

iExternal Ports

Connected Port

axi_interconnect_1

= processing_system7_0
M_AXI GPO_ARESETN
FCLE_CLK3
FCLE_CLK2
FCLE_CLKL

FCLK_CLKD

FCLK_CLKTRIG3_M
FCLK_CLKTRIG2_MN
FCLK_CLKTRIG1_M
FCLK_CLKTRIGO_M
FCLK_RESET3_M
FCLK_RESETZ_M
FCLK_RESET1_M
FCLK_RESETO_M
IRQ_F2P
Corel_nFIQ
Corel_nIRQ
Corel_nFIQ
Corel_nIRQ)
IRQ_P2F_QSPI
IRQ_P2F_GPIO
IRQ_P2F_U3B0
IRQ_P2F_ENETO
IRQ_P2F_EMET_WAKED

IRQ_P2F_sDIO0
IEQ B2E LIABT]

processing_system7_0:[M_AXT_ GPO]:M_AXIT GPO_ACLK

axi_gpio_0:[5_AXI]:5_AXT ACLK

axi_interconnect_1:[S_AXI_CTRL]:INTERCOMNMECT _ACLK

axi_timer_0::[S_AXT]:S_AKT_ACLK

chipscope_axi_monitor_0:[MON_AXIJ:MON_AXT ACLK

axi_interconnect_1:INTERCOMNMECT _ARESETM
L to H: Mo Connection

Met Direction Range

Mo Connection
_# Mo Connection
7 Mo Connection
No Connection

4

[i]t]
ocooo

4
(=]

processing_system7_0_FCLK_CLKD

_# Mo Connection

7 Mo Connection

No Connection

No Connection

No Connection

No Connection

No Connection

processing_system7_0_FCLK_RESETO_M
L to H: No Connection
Me Connection
Mo Connection
Mo Connection
Mo Connection

No Connection

No Connection

Mo Connection

_# Mo Connection

7 Mo Connection

_# Mo Connection

0 0

QOO0 O0OOQOTEEE S o000

(= (BUS_IF) M_AXI_GPO
M_AXI_GPO_ACLK

(10_IF) PS_REQUIRED_EXTER...

I0_IF) TTCO

([I0_IF) USBIND_O

= axi_gpio 0

= (BUS_IF) 5_AXI
S_AXLACLE

= (10_IF) gpio_0
GPIO_IO I
GPIO_10_0Q
GPIO_IO_T
GPIO_IO

M e denae 0

4 1

Connected to BUS axi_interconnect_1
processing_system7_0:FCLK_CLKD

_#| processing_system7_0_FCLEK_CLKD

T O] e T O TOTNeCted T CRternal Port.

Connected to External Ports
Mot connected to External Ports
Mot connected to External Ports

Connected to BUS axi_interconnect_1

processing_system7_0:FCLK_CLKD
Connected to External Ports

External Ports::axi_gpio_0_GPIO_IO_pin

£ Mo Connection
Connected to BUS axi_interconnect_1

Connected to External Ports
[=] Connected to External Ports
[=] Mot connected to External Ports
[=] Not connected to External Ports

0

E| Connected to BUS axi_interconnect_1
processing_systern7_0_FCLK_CLKD
[+] Connected to External Ports

No Connection

Mo Connection

_# Mo Connection

axi_gpie_0_GPIO_IO

oo

|

g

-

m

Figure 3-3:Processing_system7_0 Expanded and M_AXI_GPO_ACLK Connected

17. Connect the Timer interrupt on the PL side to the PS side interrupt controller
by doing the following:

a. In the Connected Port column, click L to H:No Connection of the
IRQ_F2P port of the Processing_system_7_0 instance.

The Interrupt Connection dialog box opens.

Page 37

© Copyright 2013 Xilinx
Zynq ZedBoard Concepts, Tools, and Techniques

3/22/2013

& XILINX

ALL PROGRAMMABLE.

b. In the Unconnected Interrupts list, select axi_timer_0 and click the
right arrow button to move it to the Connected Interrupts list. The
figure displays the axi_timer_0 interrupt instance connected with
Interrupt 1D 91.

P al
& Interrupt Connection Dialog - - @
Interrupt Contraller |processing_system7_0 E [Show Met Name
Unconnected Interrupt(s) Connected Interrupt(s)
Instance Mame Port Name Instance Mame Port Name

afpmmr Jrem]

a4 0
kad by

[K H Cancel H Help

Figure 3-4:Interrupt Connection Dialog Box
c. Click OK.

XPS connects the timer interrupt on the Programmable Logic side to the PS
section interrupt controller.

FCLK_RESET3_M # Mo Connection

FCLK_RESETZ_N # Mo Connection

FCLK_RESET1_MN # Mo Connection

FCLK_RESETO_N axi_interconnect_1:INTERCOMMNECT_ARESETN J{ processing_systemd_0_FCLK_RESETO_M
IRQ _F2P L to H: axi_timer_0_Interrupt L to H: axi_timer_0_Interrupt

Figure 3-5:Timer Interrupt Connected on the PL side
18. Click the Bus Interfaces tab and expand chipscope_axi_monitor_0.

19. In the Bus Name column, click No Connection. Using the drop-down list
that appears, connect chipscope_axi_monitor to axi_gpio_0.S_AXI.

By making this connection, you can monitor any type of AXI-related
transactions on the axi_gpio_0 slave AXI bus using the ChipScope Analyzer

tool.

+ Zyng Bus Interfaces Ports | Addresses &
MName IP Version Bus Name IP Type

igx_interconnect 1 i1.06.a AL axi_interconnect
processing_systemy 0 402.a L. processing_system7
axi_gpio 0 1.01b L% axi_gpio
axi_timer 0 1.03.a L5 axi_timer
- chipscope_axi_monitor_ 0 3.05.a LL chipscope_axi_monitor

MON_2XT axi_gpio_0.5_AXI =
chipscope_icon_(1.06.a LL chipscope_icon

Figure 3-6:Connected chipscope_axi_monitor

© Copyright 2013 Xilinx
Page 38 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

20. Route the PS section GPIO to the PL side 1/0O pad using the EMIO interface
by doing the following:
a. Inthe XPS System Assembly View, click the Zynq tab.

b. Click 1/O Peripherals box to open the Zyng PS Configuration
dialog box.

c. Inthe Zynqg PS Configuration tab, expand the GPIO item.
d. Click on the checkbox to select the EMIO GPIO (Width) option box.

The Width of GP10 on EMIO interface setting is enabled on the next
row. The default setting is 64.

e. Change the GPIO width to 1 in the drop-down menu. Click the Close
button to close the window and return to the System Assembly View.

f. In the System Assembly View, click the Ports tab and expand
processing_system7_0. You can see that the GPIO port is not
connected to an external port.

[Lo e Ly -
=] (BUS IF) M A)C[GPO Connected to BUS axi_interconnect_1 IZ| Connected to BUS axi_interconnect_1 IZ|

M |_AXT_GPO_ACLK processing_system7_0:FCLK_CLKD i processing_system7_0_FCLK_CLKO
@ -
[+ ('IO IF] MEMORY 0 Connected to External Ports IZ| Connected to External Ports
[+ (I0_IF) PS_REQUIRED EXTER... Connected to Erterrlal Ports IZ| Connected to Exterrlal F'orts IZ|

—

Figure 3-7: GPIO Port Not Connected to External Ports
21. Expand (IO_IF)GPIO_0 and select GP1O

22. Click the drop-down arrow in the Connected Port column and select
External Ports. Make a connection to processing_system7_0_GPIO_pin.

Making this connection allows you to assign the PL section pin location to the
PS GPIO in the user constraint file (UCF) later in this chapter.

23.Run Project > Design Rule Check.

\Warnings

be driven te GND - C:\Kilinxhi4, 1\ISE
#ill be driven to GHD -
ill be driven to GND -
to GND

EDX:4180 - PORT: tdi_in, CONNECTOR: bacan tdi - No driver found. Port will

80 - PORT: reset_: &
80 - PORT: shift_
80 - PORT: u
8

11 be driven

n, CONNECTCR: hsca ,_capture .
1 - PORT: TO_N, COMNECIOR: processing_sy 7_0_FCLK_RESETO_N - floating comnection - C:\Prode Tt
ED¥:4181 - PORT: ctdo_out, CONNECTOR: bscan _tdol = t.‘loa:.l.nq connection Y, 4 SE_I EDK Xil E a

Figure 3-8: Design Rule Check Warnlngs

24.Close XPS. The PlanAhead design tool window becomes active again.

25. In Design Sources, click on your XMP file, then right-click it and select
Create Top HDL. The PlanAhead tool updates the system_stub.v file.

26. In the Project Manager list of the Flow Navigator, click Add Sources.

27.1In the dialog box that opens, select Add or Create Constraints, then click
Next.

© Copyright 2013 Xilinx
Page 39 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

28. Click Create File. In the Create Constraints File dialog box that opens, name
the file system and click OK.

29. Click Finish.

30. Expand the Constraints folder in the Sources window. Notice that the blank
file system.ucf was added inside constrs_1.Double-click system.ucf to open
it in the editor.

SouUrces — O =
Ol s
“ |z_| I'V_JI OEI}T g E

-5 Design Sources (1)

{EhEe system_stub (system_stubov) (1)
“-] system_i - system (system.xmp]
=I-{7 Constraints (1]

DB constrs_1

: ol system.ucf

+1-{5 Simulation Sources (1]

Hierarchy | IP Sources | Libraries | Compile Order

Figure 3-9: system.ucf File Added
31. Type the following text in the UCF file:

Connect to Push Button "BTNU"
NET axi_gpio_ 0 _GPIO_I0O_pin IOSTANDARD=LVCMOS25 | LOC=T18;
Connect to Push Button "BTNR"

NET processing_system7_0_GPIO_pin IOSTANDARD=LVCMOS25 |
LOC=R18;

The following settings are made:

e The LOC constraint for NET “axi_gpio 0 _IO_pin” connects the AXI
GPI10 pin to the T18 pin of the PL section and physically connects it to
the BTNU push button on the board.

e The LOC constraint for NET “processing_system7_ 0 GPIO pin” connects
the PS section GPIO to the R18 pin of the PL section and physically
connects it to the BTNR push button on the board.

e The IOSTANDARD=LVCMOS25 constraint sets both pins to LVCMOS
2.5V 1/0 standard.

32.Save all modified files.

33. In the Program and Debug list in the Flow Navigator, click Generate
Bitstream.

Note that a dialog box will appear to warn you that synthesis is not run on
the updated files, click Yes to run synthesis. Generating the bitstream may
invoke the entire implementation process after synthesis, click yes to run

© Copyright 2013 Xilinx
Page 40 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

implementation as well when prompted. This may take a while. During this
time, you should pay attention to the console messages.

34. After the Bitstream generation completes select Open Implemented Design
in the dialog box and click OK. This allows you to get a graphical overview
of the PL resource usage and routing. Ignore any critical warnings that
appear. Export the hardware (make sure that you enable the “Include
Bitstream” option) and Launch SDK as described in Chapter 2. For this
design, since there is a bitstream generated for the PL, this will also be
exported to SDK.

3.1.2 = Take a Test Drive! Working with SDK

SDK launches with the "Hello World" project you created with the Standalone PS in
Chapter 2.

Note: You should use an external terminal emulator program (PuTTY or Tera Term)
in place of the SDK Terminal utility due to a compatibility issue between the
ZedBoard and the SDK terminal. Please make sure that the terminal emulator
program uses the recommended connection settings from Figure 2-13.

1. Select Project > Clean to clean and build the project again.

2. Open the helloworld.c file and modify the application software code. Refer to
Appendix A, Application Software for the application software details.

3. Connect and power-on the board.
4. Open the serial communication utility with baud rate set to 115200.

. Because you have a bitstream for the PL, you must download the bitstream. To
do this, select Xilinx Tools > Program FPGA. The Program FPGA dialog box,
shown below, opens. It displays the bitstream exported from PlanAhead. Please
make sure the bitstream path points to your current project.

© Copyright 2013 Xilinx
Page 41 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

@) Program FPGA

—
Program FPGA
Specify the bitstrearn and the ELF files that reside in BRAM mermory

Hardware Configuration
Hardware Specification: Chzedboard-144\project_Ihproject_1sdkSDENSDE_Exporthrmodule_1_bw_platform®systerm.xml

Bitstrearn: | [Chzedboard-148\project_Typraject_Lsdk\SDKNSDE_Exportymadule_1_kne_platformbsyster.bit | | Browse,,

BhARA File: Browse..

Software Configuration
i Processaor ELF File to Initialize in Block RAM

'\/7-::' [Program] | Cancel

Figure 3-10:Program FPGA Dialog Box

6. Click Program to configure the PL with the bitstream. The Blue DONE LED
(LD12) will light up.

7. Run the application similar to the steps in Take a Test Drive! Running the
“Hello World” Application.

8. In the system, the AXI GPIO pin is connected to push button BTNU on the
board, and the PS section GPIO pin is connected to push button BTNR on the
board via an EMIO interface.

9. Follow the instructions shown on the serial terminal to run the application.

Chapter 4 Debugging with SDK and
ChipScope Pro

This chapter describes two types of debug possibilities with the design flow you’ve
already been working with. The first option is debugging with software using SDK.
The second option is hardware debug supported by the ChipScope software.

4.1 @ Tyye a Test Drive! Debugging with Software, Using
SDK

First you will try debugging with software using SDK. This step assumes the PL is
still configured from the previous chapter.

1. Inthe C/C++ Perspective, right-click on the Hello_world Project and select
Debug As > Debug Configurations. Check that settings are correct for your
debug operation.

2. Click Debug.
© Copyright 2013 Xilinx
Page 42 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

3. A dialog box appears with a question about the reset properties of your
system.

4. Click OK.

Another dialog box appears to notify you that this kind of launch is configured
to open the Debug perspective when it suspends.

5. Click Yes. The Debug Perspective opens.

B Tt T

File Edit Source Refactor Mawvigate Search Run Project Xilinx Tools

I |n-|'o] %@ A ﬁ"@v%' ¢
%5 Debug & =0
S S liv & ~
4 §7 Hello_world Debug [Xiling CfC++ ELF]
4 HMWD Target Debug Agent (2/27713 2:12 PM) (Suspended)
a o Thread [1] (Suspended: Breakpoint hit.)
= 1main hellowarld.c:30 0x001003c8
g arm-xiling-eabi-gdb (2/27/13 2:12 PM)
gl COXUP_Spps_Projects\CTT-Plandhead144-32vproject_2hproject_2.sdk

Figure 4-1: Debug Perspective Suspended

Note: The address shown on this page might be different from the addresses
shown on your system.

The processor is currently sitting at the beginning of main() with program
execution suspended at line 0x001003c8. You can confirm this information with
the Disassembly view, which shows the assembly-level program execution also
suspended at 0x001003c8.

Note: If the disassembly view is not visible, select Window > Show view >
Disassembly.

The helloworld.c window also shows execution suspended at the first executable
line of C code. Select the Registers view to confirm that the program counter, pc
register, contains 0x00100608.

Note: If the Registers window is not visible, select Window > Show View >
Registers.

6. Double-click in the margin of the helloworld.c window next to the line of
code that reads init_platform (). This sets a breakpoint at init_platform (). To
confirm the breakpoint, review the Breakpoints window.

© Copyright 2013 Xilinx
Page 43 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

If the Breakpoints window is not visible, select Window > Show View >
Breakpoints.

7. Select Run > Resume to resume running the program to the breakpoint.

Program execution stops at the line of code that includes init_platform (). The
Disassembly and Debug windows both show program execution stopped at
0x001014c0.

8. Select Run > Step Into to step into the init_platform () routine.

Program execution suspends at location 0x00101810. The call stack is now two
levels deep.

9. Select Run > Resume again to run the program to conclusion by hitting any
key to end the application in the terminal window.

When the program completes running, the Debug window shows that the program is
suspended in a routine called exit. This happens when you are running under control
of the debugger.

10. Re-run your code several times. Experiment with single-stepping, examining
memory, changing breakpoints, modifying code, and adding print statements.
Try adding and moving views.

11. Close SDK.

4.2 @ Tsye a Test Drive! Debugging Hardware Using
ChipScope Software

Next you will try debugging hardware using the ChipScope Analyzer software using
the same application you created in 3.1.2 Take a Test Drive! Working with SDK.

1. Re-download the bitstream and application on the ZedBoard.

Note: You will need an external terminal emulator of your choice with the serial
connection set to the aforementioned settings in this document before running the
C/C++ application. This exercise will not be using the built in terminal emulator in
SDK but will require user inputs via the keyboard.

2. Run the application and close the SDK.

3. Open ChipScope Pro Analyzer. It is preferred that you launch from within
PlanAhead, although it is also launchable as an independent program from the
Windows Start Menu.

4. Click the Open/Search JTAG Cable button L .

5. Click OK after ChipScope Pro Analyzer identifies the JTAG chain. You should
see two devices identified the ARM_DAP (MyDevice0) and the XC72020
(MyDevicel).

© Copyright 2013 Xilinx
Page 44 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE«

6. Import a *.cdc file in ChipScope and by doing the following:
a. Select Dev 1 Mydevicel(XC7Z020).
b. Select File > Import.

c. Click Select New File and select the chipscope_axi_monitor_0.cdc file from
<project_path>\<project_name>.srcs\sources_1\edk\system\implementati
on\chipscope_axi_monitor_0_wrapper.

d. Click OK.
7. Set atrigger at the “ARVALID” signal by doing the following.
a. Expand the Trigger Setup window.

b. Double-click M1:MON_AXI_ARADDRCONTROL. For the
M1:MON_AXI_ARADDRCONTROL unit, change the value of
axi_gpio_0.S_AXI/MON_AXI_ARVALID from the default of X to 1. With
this setting, any positive transaction on this signal triggers the analyzer and
waveform will be displayed.

@ Trigger Setup - DEV:1 MyDevice1 (XC7Z020) UNIT:0 MyILAD {ILA) &

z Match Unit Funclion Value Radix Counter
% o MOMON A ARADDR — OO0 IO KOO SOCOC OGO GO0 GO0 GO0 Bin dwd -
¢ 3 M1:MON_AXI_ARADDRCONTROL == 1_30C00 Bin disabled
axi_gpio_0.5_AXIMON_AXI_ARVALID 1
j axi_gpio_0.5_AXIMON_AXI_ARREADY X
j axi_gpio_0.5_AXIMON_AXI_ARPROT[Z] X
j axi_gpio_0.5_AXIMON_AXI_ARPROT[1] X
j axi_gpio_0.8_AXIMON_AXI_ARPROTIO] X
o= £ M2:MON_AXI_AWADDR == 00O HC00C_SCOC_000(_I0CO{I000C_XC00_G0CK Bin disabled
o= 73 M3:MON_AXI_AWADDRCONTROL == KOO0 Bin disabled
o= [M4:MON_AXI_BRESP == JO0CK Bin disabled
o= [M5MON_AXI_GLOBAL == X Bin disabled
o= [MBMON_AXI_RDATA == O 000K XOOCHK OO0 X000 G0 Bin disabled
o= [M7:-MON_AXI_RDATACONTROL == JO0CK Bin disabled
o= [ME:MON_AXI_WDATA == 0000 XOOCHK_XO0O(_XOCOE 000K _C0 Bin disabled
o= [MA:MON_AXI_WDATACONTROL == HOH_HOOGK Bin disabled
-
3|[Ada || Active \ Trigger Condition Name | Trigger Condition Equation | Output Enable \ |
= }T“ (0] ‘ TriggerCondition0 | M0 | Disabled |§|
g| e Windows 1 Deptn: [1024 B Position 0
s Storage Qualification All Data
[o ||

Figure 4-2: Trigger Setup Window, MON_AXI_ARVALID Setting

c. Inthe Trig section of the Trigger Setup window, click MO in the Trigger
Condition Equation column.

The Trigger Condition dialog box opens.

d. In the Enable column, unselect MO and select M1.

© Copyright 2013 Xilinx
Page 45 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE«

The trigger channel changes from MO0 to M1; the ARVALID signal is on the M1
channel.

Trigger Condition: TriggerCondition0 u

l/EltmIean rSequencer |

@ AMND Equation) OR Equation [] Megate Whole Equation

Match Unit Enable Me

Ma []
| M
Mz
M3
M4
M5
ME&
M7
M3
Ma

ate

T]

I T E E N T

4]

Trigger Condition Equation

M1

[| OK H Cancel | I

Figure 4-3: Trigger Condition Dialog Box
Click OK.

8. In the Capture section of the Trigger Setup window, change the Position setting
from 0 to 512.

The Trigger Point moves to the middle of the waveform as the sample depth
changes to 1024.

9. Click the Run button

ChipScope Analyzer waits for the trigger event.

10. Follow the instructions on the serial terminal to select the AXI GPIO use case.
This triggers the waveform.

© Copyright 2013 Xilinx
Page 46 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

cotE |

@ ‘Waveform - DEV:1 MyDevice1 (XC7Z020) UNIT:0 MyILAO (ILA)

512 -432 -352 -272 -192 -112 -32 48 128 208 288 368 448

SEELT 8 1 I I \ ! | 1 | \ 1 1 \

axi_gpic_0.5_AXI/MON_RXI_ARREADY

axi_gpio_0.5_AXI/MON_AXT_ARVALID

axi_gpic_0.5_AXI/MON_AXI_AWREADY

axi_gpio_0.5_AXI/MON_AXI_AWVALID

axi_gpic_0.5_AXI/MON_AXI_BREADY

axi_gpic_0.5_AXI/MON_AXI_ARESEIN

axi_gpio 0.5 AXI/MON AXT RREADY

axi_gpio 0.5 RXI/MON BXT RVALID

axi_gpio 0.5 AXI/MON AXI WREADY

of @
of @
of @
of @
of @
axi_gpio_0.5_AXI/MON_AXI BVALID ol @
il 1
a a
a a
a a
ol @

axi_gpic_0.3_AXI/MON_AXT_WVALID

“ axi _gpio 0.5 AXT/MON AXT ARADDR 42801| 42801 42800000

o axi_gpio 0.5 ANT/MON AXT ARPROT 1l 1

o axi gpio 0.5 ANI/MON AXT AWADDR 42804280 42600000

o axi gpio 0.5 ANI/MON AXT AWPROT il 1

o axi gpio 0.5 AXI/MON AXI ERESP o o 4

[l

o axi gpio 0.5 AXI/MON AXI RDATA 00000000 00000000)
[4]] T
Waveform captured Oct 9, 2012 11:45.41 Al x| sizfs] o sig[a]r] ax-o):]

a
-

Figure 4-4:Waveform captured in Chipscope

11. Exit the program, close the ChipScope Analyzer without saving the project, and
close the SDK.

© Copyright 2013 Xilinx
Page 47 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

Chapter 5 Booting Linux and Application
Debugging Using SDK

This chapter describes the steps to boot the Linux OS on the Zyng-7000 AP SoC
ZedBoard. It covers programming of the following non-volatile memories with the
Linux precompiled images, which are used for automatic Linux booting after switching
on the board:

e On-board QSPI Flash
e SD card

This chapter also describes using the SDK remote debugging feature to debug Linux
applications running on the ZedBoard. The SDK tool software runs on the Windows host
machine. For application debugging, SDK establishes an Ethernet connection to the
target board that is already running the Linux OS.

5.1 Requirements

The target hardware platform is the ZedBoard. The host platform is a Windows
machine running the ISE Design Suite Tools 14.4 WebPACK.

Note: The U-Boot universal bootloader is required for the tutorials in this chapter.
This is included in the precompiled images supplied with this document.

The zipfile includes these files (in addition to others used in other sections):

e BOOT.bin: Binary image containing the FSBL and U-Boot images produced by
bootgen

e Dbootimage.bif: The file to control bootgen during the creation of BOOT.BIN
e devicetree.dth: Device tree binary large object (blob) used by Linux, loaded into
memory by U-Boot. Note, the devicetree.dtb will not work if the hardware design

has different peripherals specified

e ramdisk8M.image.gz: Ramdisk image used by Linux, loaded into memory by U-
Boot

e README.txt: Description of the release
e u-boot.elf: U-Boot file used to create the BOOT.BIN image
e zIlmage: Linux kernel image, loaded into memory by U-Boot

e zyng_fshl_0.elf: FSBL image used to create BOOT.BIN image

© Copyright 2013 Xilinx
Page 48 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

e hello world linux.c: sample ‘hello world’ ¢ file used
e stub.tcl: script file specific to the ZedBoard rev C

5.2 Booting Linux on a ZedBoard

This section covers the flow for booting Linux on the target board using the
provided precompiled images.

5.2.1 Boot Methods

The following boot methods are available:

e Master Boot Method
e Slave Boot Method

Master Boot Method

In the master boot method, different kinds of non-volatile memories like QSPI, NAND,
NOR flash, and SD cards are used to store boot images. In this method, the CPU loads
and executes the external boot images from non-volatile memory into the Processor
System (PS). The master boot method is further divided into Secure and Non Secure
modes. Refer to the Zyng-7000 All Programmable SoC Technical Reference Manual
(UG585) for more detail.

The boot process is initiated by the ARM Cortex-A9 CPUO in the PS and it executes on-
chip ROM code. The on-chip ROM code is responsible for loading the first stage boot
loader (FSBL). The FSBL does the following:

Configures the FPGA with the hardware bitstream (if it exists)

Configures the MIO interface

Initializes the DDR controller

Initializes the clock PLL

Loads and executes the Linux U-Boot image from non-volatile memory to DDR

The U-Boot loads and starts the execution of the Kernel image, the root file system, and
the device tree from non-volatile memory to DDR. It finishes booting Linux on the target
platform.

© Copyright 2013 Xilinx
Page 49 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

Slave Boot Method

JTAG can only be used in slave boot mode. An external host computer acts as the master

to load the boot image into the OCM using a JTAG connection.

The PS CPU remains in idle mode while the boot image loads. The slave boot method is
always a non-secure mode of booting.

In JTAG boot mode, the CPU enters the halt mode immediately after it disables access to
all security related items and enables the JTAG port. You must download the boot images

into the DDR memory before restarting the CPU for execution.

5.2.2 Booting Linux from JTAG

The flowchart illustrates the process used to boot Linux on the ZedBoard.

Page 50

Boot Rom

v

Load and execute
First Stag Boot Loader
{(FSBL)

v

Load bitstream

v

Load and Execute U-Boot

v

Load Linux Kernel

v

Load Device Tree

v

Load Root File System

v

Run All

Figure 5-1: Linux Boot Process on the ZedBoard

© Copyright 2013 Xilinx
Zynq ZedBoard Concepts, Tools, and Techniques

3/22/2013

& XILINX

ALL PROGRAMMABLE

5.2.3 s Take a Test Drive! Booting Linux in JTAG Mode
1. Check the board connections and settings:

a. Ensure that the jumpers JP7-JP11 are set as shown in Figure 5-2:Jumper
Settings to boot in JTAG mode.

Figure 5-2:Jumper Settings to boot in JTAG mode

b. Connect an Ethernet cable from the Zynq board to your Windows host
machine.

c. Connect the power cable to the board.

d. Connect the USB programming micro cable between the Windows Host
machine and Prog USB port on the Target board.

e. Connect a USB micro cable to the USB UART connector on the ZedBoard
with the Windows Host machine. This is used for USB to serial transfer.

2. Power on the ZedBoard.

3. Launch the SDK standalone and open the same workspace that you used in
Chapter 2 and Chapter 3. The workspace directory is found at the following
location: <path to project>/project_1.sdk/SDK/SDK_Export/

4. If the serial terminal is not open, connect the serial communication utility with the
baud rate set to 115200.

5. Open the XMD tool by selecting Xilinx Tools > XMD console
6. Atthe XMD prompt, do following:

a. Type connect arm hw to connect with the PS section CPU.

© Copyright 2013 Xilinx
Page 51 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

b. Type source <path to project>/project_1.sdk/SDK/SDK_Export/hw/
ps7_init.tcl and then type ps7_init at the command prompt to initialize the
PS section (such as Clock PLL, MIO, and DDR initialization).

IMPORTANT! If you are using a rev C Zedboard, follow steps c and d.
Otherwise, skip to step e.

c. Atthe command prompt type source <directory>/stub.tcl

Note: Where stub.tcl is located in the location where you unzipped the
contents of the downloaded zip file.

d. Type target 64 to provide execution control to CPUO.
e. Type dow <directory>/u-boot.elf to download Linux U-Boot.

f. Type con to start execution of U-Boot. Immediately switch to the serial
terminal.

On the serial terminal, the autoboot countdown message appears:
Hit any key to stop autoboot: 3
g. Pressany key.

Automatic booting from U-Boot stops and a command prompt appears on the serial
terminal.

h. At the XMD Prompt, type stop.
The U-Boot execution is stopped.

i. Type dow -data_<directory>/zImage.bin 0x8000 to download the Linux
Kernel image (zlmage) at location 0x8000.

j. Type dow -data <directory>/ramdisk8M.image.gz 0x800000 to
download the Linux root file system image at location 0x800000.

k. Type dow -data <directory>/devicetree.dtb 0x1000000 to download the
Linux device tree at location 0x1000000.

I. Type con to start executing U-Boot.

7. At the command prompt of the serial terminal, type go 0x8000.

© Copyright 2013 Xilinx
Page 52 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

The Linux OS boots. After booting completes, the zyng> prompt appears on the
serial terminal

8. Atthe zynq> prompt, do the following:

a. Set the IP address of the board by typing the following command at the
zynqg> prompt: ifconfig eth0 192.168.1.10 netmask 255.255.255.0

This command sets the board IP address to 192.168.1.10.

b. Check the connection with the board by typing ping 192.168.1.10. The
following ping response displays in a continuous loop:

64 bytes from 192.168.1.10: seq=0 ttl=64 time=0.185 ms

This response means that the connection between the Windows host machine
and the target board is established.

c. Press Ctrl+C to stop displaying the ping response.

Linux booting completes on the target board and the connection between the
host machine and the target board is done.

5.2.4 Booting Linux from QSPI Flash

5.2.5 o Take a Test Drive! Booting Linux from QSPI Flash
This Test Drive covers the following steps:

1. Create the First Stage Boot Loader Executable File.

2. Make a Linux Bootable Image for QSPI Flash.

3. Program QSPI Flash with the Boot Image using JTAG.
4. Booting Linux from QSPI Flash.

1. Step 1: Create the First Stage Boot Loader Executable File

Note: You can skip this step by using the zynq_fsbl_0.elf provided.
1. In SDK, select File > New > Application Project.

The New Project wizard opens; for Project Name, type in zyng_fsbl 0 and
click Next.

2. Select Zyng FSBL in the Template list and keep the remaining default options.
The Location of your project, the hardware platform used, and the processor are
visible in this window. The processor is ps7_cortexa9 0.

© Copyright 2013 Xilinx
Page 53 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

3. Click Finish to generate the FSBL.

The Zyng FSBL compiles and .elf file is generated.

2. Step 2: Make a Linux Bootable Image for QSPI Flash

1. In SDK, select Xilinx Tools > Create Zyng Boot Image.
The ‘Create Zynq Boot Image’ wizard opens.

2. Provide the path to zynq_fsbl_0.elf in the FSBL ELF field.
3. Add the provided U-Boot image.

4. Add the Linux Kernel image, zImage.bin, and provide the offset 0x100000.

IMPORTANT: There is a Known Issue with the Bootgen command: it does
not accept a file without a file extension. To work around this issue, change
the zImage downloaded file to zImage.bin.

5. Add the device tree image (devicetree.dtb) and provide offset - 0x3c0000.

6. Add the root file system image (ramdisk8M.image.gz) and provide offset
0x400000.

The provided offsets are predefined in the U-Boot. U-Boot expects those addresses
when booting from QSPI, therefore you must not change the offset without
modifying and re-building the U-Boot image.

7. Provide the absolute path to the output folder name in the Output older tab.
In this example, we have used “qspi-boot” as the folder to store the output
files.

© Copyright 2013 Xilinx
Page 54 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE«

(© croe 2 oot oo S S

Create /ynq Boot Image

L‘

Creates Zynq BootImage in bin and .mcs formats from given FEBL elf and partition files in specified output folder,

Basic Advanced

Bif file | Create a new bif file... -|
FSEL elf Chzedboard-144ifilesiayng_fsbl_0.elf
List of partitions in the boot image,
File Offset Llignment Allocation Add
Cizedboard-1444files\zyngq_fshil_0.elf
== Remowve
Cizedboard-1444files\u-boot.elf
Cihzedboard-144files\zlmage.bin
Cizedboard-1444files\devicetree.dth 0x3c0000
D
Cizedboard-148files\ramdisk3M.image.gz 0400000
Output folder C\zedboard-144\gspi-booty,

® [Create Image J l Cancel

Figure 5-3:Creating a Zynq QSPI Boot Image

8. Click Create Image.

The Create Zynq Boot Image window creates following files in the specified
output folder:

bootimage.bif
u-boot.bin
u-boot.mcs

3. Step 3: Program QSPI Flash with Boot Image using JTAG & UBoot

1. Power on the ZedBoard.
2. Set the Jumpers JP7-11 to the JTAG boot mode:
MI06: 0
MI05: 0
MI04: 0
MI03: 0
MI02: 0

© Copyright 2013 Xilinx
Page 55 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

3. If a serial terminal is not open, connect the serial terminal with the baud rate
set to 115200.

4. Select Xilinx Tools > XMD Console to open the XMD tool.
5. From the XMD prompt, do the following:
a. Type connect arm hw to connect with the PS section CPU.

b. Type source ps7_init.tcl and then ps7_init to initialize the PS section
(such as Clock PLL, MIO, and DDR initialization).

c. Type dow <directory>/u-boot.elf to download the Linux U-Boot to
the QSPI Flash.

Note: The <directory> is the output directory you previously
provided.

d. Type dow -data <boot_directory>/u-boot.bin 0x08000000 to
download the Linux bootable image to the target memory at location
0x08000000.

You just downloaded the binary executable to DDR memory. You can download
the binary executable to any address in DDR memory, but make sure that you do
not change the U-Boot executable, which is loaded at 0x04000000. You run this
file after loading the u-boot.bin data file.

e. Type con to start execution of U-Boot.
On the serial terminal, the autoboot countdown message appears:
Hit any key to stop autoboot: 3
6. Press Enter.

Automatic booting from U-Boot stops and the zed-boot> command prompt
appears on the serial terminal.

7. Do the following steps to program U-Boot with the bootable image:
a. At the prompt, type sf probe 0 0 0 to select the QSPI flash.

b. Type sf erase 0 0x01000000 to erase the Flash data. (Note that this
step can take about 8 minutes to complete.)

c. Type sf write 0x08000000 0 OXFFFFFF to write the boot image on
the QSPI Flash.

Note that you already copied the bootable image at DDR location 0x08000000.
This command copied the data, of the size equivalent to the bootable image size,
from DDR to QSPI location 0xO.

You can change the argument to adjust the bootable image size.

© Copyright 2013 Xilinx
Page 56 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

L PROGRAMMABLE

— — —
Y COM29:115200baud - Tera Term VT [E=SREER

File Edit Setup Control Window KanjiCode Help

2 - 18:04:19)

U 0«FFFFFF

Figure 5-4: Serial Terminal Window showing QSPI programming
8. Power off the board.

4. Booting Linux from the QSPI Flash

1. After you program the QSPI Flash, set the jumper settings (JP7-11) on the
ZedBoard. Jumper settings for QSPI:

MI106: 0

MI05: 1

MI104: 0

MI103: 0

MI102: 0
2. Connect the Serial terminal with a 115200 baud rate setting.
3. Switch on the board power.

A Linux booting message appears on the serial terminal. After booting finishes,
the zynq> prompt appears.

© Copyright 2013 Xilinx
Page 57 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

i COM29:115200baud - Tera Term E

Figure 5-5:Serial Terminal Window showing Linux Booting

5.2.6 Booting Linux from the SD Card

5.2.7 s Take a Test Drive! Booting Linux from the SD Card

Ensure that the jumper settings (JP7-11) are set to boot from SD card as shown in the
figure.

Figure 5-6:Jumper Settings to boot from SD Card

1. Create an FSBL for your design as described in “Step 1: Create the First Stage
Boot Loader Executable File” . Alternatively, you can use the zync _fsbl 0.elf file
that you downloaded previously.

© Copyright 2013 Xilinx
Page 58 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

2.

In SDK, select Xilinx Tools > Create Zyng Boot Image to open the “Create
Zynq Boot Image” wizard. Alternatively, you can use the u-boot.bin file that
you downloaded previously, and skip to step 6.

Add zyng_fsbl_0.elf and u-boot.elf.

Provide the location to store all generated files in the Output Folder field.
Make sure to rename

Click Create Image. SDK generates the u-boot.bin file in the specified
output folder.

Rename u-boot.bin to BOOT.bin. Copy BOOT.bin, zImage, devicetree.dth
and ramdisk8M.image.gz to the SD card. Make sure the SD card is FAT32
formatted before copying the files into it.

Turn on the power to the board and check the messages on the Serial
terminal. The zyng> prompt appears after Linux booting is complete on the
target board.

5.3 Hello World Example

This example shows you how to create a simple Linux application that prints “Hello
World” on a serial terminal window.

5.3.1 o Take a Test Drive! Running a “Hello World” Application

1.

Setup your ZedBoard connections
a. Connect the power cable to the ZedBoard.

b. Connect a USB micro cable to the USB UART connector on the ZedBoard
with the Windows Host machine. This is used for USB to serial transfer.

c. Make sure the SD card with the Linux image is inserted into the ZedBoard.

Launch SDK, and navigate to the same project directory that you used earlier in
this chapter to create an FSBL. In this section, the directory used for illustration is:
C:\zedboard-143\project_1\project_1.sdk\SDK\SDK_Export.

In SDK, select File > New > Application Project.

© Copyright 2013 Xilinx

Page 59 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABL

C/C++ - Hello_world_bsy .mss - Xilin D!

Edit Source Refactor Mavigate Search Run Project JGlinxTaols Window Help

New Alcashifeell » | S Application Project 0-Q- ™ T E s oy
Open File, Board Support Package -
4 !]},p it 8 ° H)fEowx\ @ma| =8
Close culay ([Prolect- A e
Close Al CtrleShifesW | @5 Source Folder I outine T notavalabie
Save Culeg L Folder
Save Bs... ¢ Source File
Save All CrleShifees | [HeaderFile
et File from Template ere—,
5 C

. @ s 1.sckySDKASDK_Exportrnodule 1w _platforrisystern.smi

— |1 ther, ChleN

Refresh B

Canvert Line Delimiters To » Geageos

Print. Cilap | tandalone 3
108

Switch Workspace ,

Standalone s a simple, low-level software layer. It provides access to basic processor features such as caches, interrupts and exceptions as well as the basic features of 3 hosted environment, such s
Restart standard input and output, profiling, abort and exit

standalone v3 08 o

fe3 Import..
3 Export, 5
pem— Altsgney the Boord Suppott Package

Shits gpio Dacurnentation Exarnples
Lhelloworld.c [Hello_world/src] 3bits gpie Documentation Exarnples

2 systern.mss [Hello_world_bsp] afi0 generic
Fsysternaml [module_1 hw_platfarm] afi_1 generic
afi_2 generic
Exit Afi3 generic
psT_dd_D generic
psT_ddrc_D generic
psT_dev_cfg 0 devcfg Docurmentstion Exarnples
psT_dma_ns dmaps Documentation Bxamples
psT_dma_s dmaps Documentation Examples
psT_ethernet_0 emacps Documentation Examples
pe7_apio 0 gpiops Documentation Examples
psT_iop_bus_config_0 generic
psF_aspi0 aspips Documentotion Examples -
Ouerview| Source|
[21 Problems |] Tasks | E Console &2 Properties| & Terminal | 5 Progress &H|
SDKLag

Figure 5-7: New Project Selection
4. Enter hello_world_ap in the Project name field
5. Select Linux as the OS Platform in the Target Software and select Finish.
6. Select C as the Language.

7. Click Next.

© Copyright 2013 Xilinx
Page 60 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

wovrors O e e

Application Project _
Create a managed rmake application project, @

Froject narme: hello_world_ap

Use default location

Location: | C:\zedhuard—l44‘1pr0ject_1‘1project_l.sdk\SDK‘xSDK_Expu:ur‘t\h-| | Browese,.,

Choose file systerm: |defau|t -

Target Hardwvare

Hardware Platform [rnodule_1 hwe_platform

Processar [ps?_cor‘texag_ﬂ

Target Software
0% Platfarm [Iinux

Language @C DOC+s

Board Support Package @ Create Mew |

Ise existing |

Figure 5-8: Application Project

8. Select Linux Empty Application and click Finish.

© Copyright 2013 Xilinx
Page 61 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

reworiec N - |

Templates

Create one of the available ternplates to generate a fully-functioning @
application project,

Losailable Ternplates:

& blank Linus C project, -

| Finish || Cancel |

Figure 5-9:Add An Empty Application

9. Add a Software Application. At this point, you will create a software platform and
an empty software project for the hardware. You will then import the
hello_world_linux.c into the project, and SDK will automatically build and
produce an elf (Executable and Load Format) file.

10. Right Click hello_world_ap and select Import.

11. In the Import dialog box, select General > File System and select Next.

© Copyright 2013 Xilinx
Page 62 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

-
o I
Select
E\A f
Impert rescurces from the local file systern into an existing project.
Select an import source:
type filter text
4 [= General
[E ArchiveFile
¥ Existing Projects into Workspace
|71 File System|
El Preferences
b= C/C++
[> [~ Remote Systems
[[Run/Debug
[= Team
@ < Back Next > o

Figure 5-10:Import .c file

12. Browse to the directory in which you saved the files that you downloaded. Select
hello_world_linux.c and select Finish . In this example, the directory is
C:\zedboard-143\files.

© Copyright 2013 Xilinx
Page 63 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

Impart =R X
File system —
Irnpaort resources from the local file system. / ,:
-
From directany: Cizedhoard-144\iles -
= files B 24 h: "

@ hello_world_linux.c
] €] hellowarld.c

|] [g] leds_switches.c

1 [5 qspi-boot.bin

] = gqspi-boot.rcs

[EramdiskBEM.image.gz
[EramdiskBM.image_REN.ﬂ.MEDzed.gz

m

] gramdiskBM.imaqe.qz i
: [FilterTypes... ” Select All ” Deselect Al l
Into folder: hello_waorld_ap
Options

[C] Owveririte existing resources without warning

[[] Create complete falder structure

@j [t = [Finish] [Cancel

Figure 5-11: Select hello_world_linux.c

Check that the application is built without errors. Check the message log in the Console
window. You will see text similar to:

Invoking: ARM Linux Print Size
arm-xilinx-linux-gnueabi-size hello world_ap.elf |tee
"hello_world_ap.elf.size"
text data bss dec hex filename
1440 292 4 1736 6c8
hello _world_ap.elf
Finished building: hello world ap.elf.size

1. Inyour project directory, you will see that the compiled file, hello_world_ap.elf
has been created. In this example, hello_world_ap.elf is located in the directory:
C:\zedboard-143\project_1\project_1.sdk\SDK\SDK_Export\hello_world_ap\Debug

© Copyright 2013 Xilinx
Page 64 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

Copy hello_world_ap.elf to the SD card containing the Linux boot files.

no

3. Insert the SD card back into the ZedBoard.

4. Ensure that the Jumpers JP7-11 are set in SD card boot mode.

5. Power on the ZedBoard, and open a serial terminal window.

6. Boot Linux on the ZedBoard from the SD card with the pre-built image.

7. You will know that Linux has been successfully booted when you see the zyng>
prompt in your serial teriminal window.

COM29:115200baud - Tera Term VT | S|

N
et e S —
File Edit Setup Control Window KanjiCode Help

Figure 5-12:Serial Teriminal Window showing Linux Booting

8. In the serial terminal window, at the zynq> prompt type:
zyng> mount /dev/mmcblkOpl /mnt
zyng> /mnt/hello_world_ap.elf

This executes the hello_world_ap program and you see the display on the terminal.

© Copyright 2013 Xilinx
Page 65 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

£ XILINX

GRAMMABLE

: T BT
M COMZ29:115200baud - Tera Term VT (=] B [
el

File Edit Setup Control

dow KanjiCode Help

Figure 5-13: Serial Terminal Window showing hello_world_linux running

5.4 Controlling LEDs and Switches in Linux Example

This example shows you how to create a simple Linux application that controls the status
of the LEDs and prints the value of the switch settings, then prints “Hello World” on a
serial terminal window. In this example, the default ZedBoard settings in PlanAhead as
well as XPS are used; a bitstream is generated in PlanAhead and then the entire design is
exported to SDK.

5.4.1 s Take a Test Drive! Controlling LEDs and Switches in a Linux
Application

For this test drive, just as you did in Chapter 2, you start the ISE PlanAhead design
and analysis tool and create a project with an embedded processor system as the top
level.
Start the PlanAhead tool.

3. Select Create New Project to open the New Project wizard.

4. Use the information in the table below to make your selections in the wizard
screens.

© Copyright 2013 Xilinx
Page 66 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE«

Wizard Screen System Property Setting or Command to Use
Project Name Project name Specify the project name.
Project location Specify the directory in which to store

the project files.

Create Project Subdirectory Leave this checked.

Project Type

Specify the type of sources for Use the default selection, RTL Project.
your design. You can start with
RTL or a synthesized EDIF

Add Sources

Do not make any changes on this screen.

Add Existing IP

Do not make any changes on this screen.

Add Constraints

Do not make any changes on this screen.

Default Part

Specify Select Boards.

Board Select ZedBoard Zynq Evaluation and
Development Kit

New Project Summary

Project summary Review the project summary before
clicking Finish to create the project.

Default Part

Choose a default Xilinx part or board for your project, This can be changed later, g\tﬁ

Specify Filter
5 Parts Farnily | Zyng-7000
Package | All Remaining
Speed grade | -1
Reset 4l Filkers
Search: | O
If0 Pin Available LUT . EBlock

Eoard I Count I0Bs Elemnents FlipFlops RAMSs
B z¥MNQ-7 ZC702 Evaluation Board & xc7z020clg484-1 454

[T =]

Page 67

Figure 5-14: New Project Wizard Part Selection
© Copyright 2013 Xilinx
Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

When you click Finish, the New Project wizard closes and the project you just
created opens in the PlanAhead design tool.

[project_1 - [C/XUP_Apps_Projects/CTI-PlanAheadid4-33/
File Edit Flow Tools Window Loyout View

&= a <|® D % ® K| E G [Sodakiaos I N ® Ready
Flow Navigator « ct Manager - project._{ X
A= — O % | [EProject summary x o x
T T e S| @ Project settings Edt (2) Messages
5 Project Settings b praject_1 Summary:
2Zynar 7000
Proj cPal2clgtd-t
Top module name: ot Defined
Synthesis 0 Implementation
4 RTL Analysis ® s P 1l
- g% Open Elaborated Design Status: = Ready Statusi =P Ready
Part: xc72020clg44-1 Part: xe7z0Z0CigEe-1
Strateqy: Flsnahesd Defaults Strateqy: [5E Defaults
Flows ST Fow: IEE
5 Implementation Settings e x
fes —ou
> Run Implementation =
- b (25
B¥ Open Implemented Design
& Launch Chipcope Analyzer
B Launch pACT
Design Runs o
O ame Part Constraints Strategy Status Progress Start Elspsed UbI(%) FMax(MHz) TimingScore Unrouted Description
|2 synth %c72020cg464-1 constrs 1 Planahead Defaults (45T 14) Not started 0%
@ = impl_L XC720200I0484-1 constrs 1 ISE Defauls (ISE 14) Not started ——————10%
4
»
|
-
« Q=)
[Tel Corsole | (- Messages | G Log | [3 Reparts | (5 Design Runs

Figure 5-15: PlanAhead GUI
You'll now use the Add Sources wizard to create an embedded processor project.
11. Click Add Sources in the Project Manager.
The Add Sources wizard opens.

12. Select the Add or Create Embedded Sources option and click Next.
13. In the Add or Create Embedded Source window, click Create Sub-Design.

14. Type a name for the module and click OK. For this example, use the name
system.

The module you created displays in the sources list.
15. Click Finish.

The PlanAhead design tool creates your embedded design source project. It
recognizes that you have an embedded processor system and starts XPS.

© Copyright 2013 Xilinx
Page 68 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE«

Continuing Your Design in XPS

Create a new embedded system in XPS using the Base System Builder (BSB)
Wizard.

In the BSB Wizard, you can select and configure the processing system 1/0O
interface and add default peripherals to the fabric.

Designing a New Embedded System Using the BSB Wizard

1. The dialog box opens, and asks if you want to create a Base System using the
BSB Wizard. Select Yes.

oo I ==

This project appears to be a blank zyng project, Do you want to create a Base
Systern wsing the BSE Wizard?

Figure 5-16: Platform Studio dialog box

The first window of the BSB asks you to elect whether to create an AXI-based or
PLB-based system.

© Copyright 2013 Xilinx
Page 69 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE«

| Create New XPS Project Using BSB Wi [

New Project

i
—

Project File | C:hzedboard-144iproject_1iproject_1.sresisources_1iedkimodule_Limodule_1.xmp Browse ..,

Select an Interconnect Type

@ A%T System
AxIis an interface skandard recently adopted by ¥ilinx as the standard interface used For all current and
fFuture wersions of xilinx IP and kool Alows, Details on AxI can be Found in the AXI Reference Guide on
xilin:, com,

PLE Stystern

PLE is the legacy bus standard used by Xiliny that supports current FPGA Families, including Spartang and
Wirkexh, PLE IP will nok support newer FPGA Families, so is not recommend For new designs that may
migrate to Future FPGA Families, Details on PLE can be Found in the PLEw46 Interface Simplifications
docurment on xiline. com.

Select Existing .bsh Settings File{saved from previous session)

Browse ...

Set Project Peripheral Repositary Search Path

o] o]

Figure 5-17:Create New Project BSB Wizard
2. Select AXI System and click OK.

3. Inthe Base System Builder wizard, create a project using the settings described
in the table. Where a setting or command has not been specified, accept the
default values.

Wizard Screen System Property Setting or Command to Use
Board and System Board Use the default option to create a system
Selection for ZedBoard Zynq Evaluation and

Development Kit.

Note: This is pre-populated because you
selected this board in the PlanAhead tool.

Board Configuration This information is pre-populated based
on your board selection..

Select a System Zyng Procesing System 7
Peripheral Select and Configure Peripherals | Leave the default peripheral
Configuration Configuration as-is.

© Copyright 2013 Xilinx
Page 70 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

9.

ALL PROGRAMMABLE

& Base System Builder - AXI flow 2= |
Peripheral Configuration
To add a peripheral, drag it from the "Available Peripherals” list to the Induded Peripherale list. To configure a core parameter, dick on the peripheral,
Select and Configure Peripherals
Available Peripherals Induded Peripherals for Processing System7 Select All
Peripheral Mames Core Parameter
10 Devices BTMs_SBits
= Internal Peripherals C:)re axi_gpio
axi_bram_ctrl Add > Use Interrupt
axi_timebase_wdt LEDs_BBits
axi_tirmer Core: axi_gpio
SWs_8Bits
Core: axi_gpio
[<nede | [b][concd

Figure 5-18: Peripheral Configuration Wizard
Click Finish.

Close the XPS window. The active PlanAhead tool session updates itself with
the project settings.

Back in PlanAhead, under Design Sources in the Sources pane, select and right-
click system (system.xmp) and select Create Top HDL.

PlanAhead generates the system_stub.v top-level module for the design.

Generate a Bitstream: Under Program and Debug, select Generate Bitstream
Select File > Export > Export Hardware for SDK.

The Export Hardware dialog box opens.

Check the Include Bitstream check-box By default, the Export Hardware
check-box is checked.

Check the Launch SDK check-box.

10. Click OK; SDK opens.

© Copyright 2013 Xilinx

Page 71 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

Continuing Your Design in SDK
1. Connect thel2V AC/DC converter power cable to the ZedBoard barrel jack.

2. Connect a USB micro cable between the Windows Host machine and the
ZedBoard JTAG (J17).

3. Connect a USB micro cable to the USB UART connector (J14) on the ZedBoard
with the Windows Host machine. This is used for USB to serial transfer.

4. Connect an Ethernet cable between the ZedBoard and the Windows Host
machine.

5. Power on the board using the jumper settings to boot from SD card.
M106: 0
MI05: 1
MI0O4: 1
MIQO3: 0
MI02: 0
6. Open a serial communication utility for the COM port assigned on your system.

The default configuration for Zynq Processing System is: Baud rate 115200; 8 bit;
Parity: none; Stop: 1 bit; Flow control: none

7. Linux boots up, and you will see the promt zynq> in the serial terminal window.
Next, program the FPGA with the bitstream created in PlanAhead.

8. In SDK, select Xilinx Tools > Program FPGA. Select the bitstream generated in
PlanAhead, and click Program.

9. When the FPGA is programmed, you will see the DONE LED LD12 light up in blue.

It may be necessary to double check the IP address of the ZedBoard for the subsequent
steps. With the serial terminal open, at the zynq> prompt, type ifconfig ethO to verify
that the address is set for 192.168.1.10. This should be the default IP address of the
ZedBoard. If the IP address is not the same as above, then type: ifconfig ethO
192.168.1.10 netmask 255.255.255.0 to set the correct board IP address.

Add the software application.

10. In SDK, select File > New > Application Project

© Copyright 2013 Xilinx
Page 72 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

C/C++ - Hello_world_bs mss - Kilin SD e
[File] Edit Source Refactor Navigate Search Run Project XlinxToals Window Help
New Alt+Shift+M b | &) Application Project 0-%- @5~ - B - B (@@ c/c+
Open File.. | Board Suppart Package =
b !h : pp g = 0|8z out 2\ @ =a
Close cuaw | [Froect B B
Close Al ChrlShift+W | B9 Source Folder o e 5 eEalEEe
Save Colss | — Feftter
. ¢ Source File
Save Al Ctrl+Shift+S 2 | oAl
e File from Template p—.
§ Class
F— 15dK\SDK\SDK_Exparfimadule_1_hw_platformisystem.m|
Rename rp B3 Other.
Refresh [EIY
Convert Line Delirniters To > Liage 03, |
Print.. Ctd+p | standalone
3082
Switch Workspace ¥ | Standalone is a simple, low-level software layer. It provides access to basic processor features such as caches, interrupts and exceptions as well as the basic features of a hosted environment, such as
Restart standard input and output, profiling, abort and exit,
standalone w3 08 3
fx Impert..
wh Export s
Properties Altabnger |the Bodrd Support Package
Sbits gpic Documentation Examples
Lalleymitie (Rl Bbits gpio Documentation Examples
2 systern.mss [Hello_warld_bsp] b0 generic
3 systernxml [module 1 hw_platform] afi_L generic
afi_2 generic
Exit afi_3 generic
psT_ddr_0 gereric
psT_ddre_ geneiic
psT_dev_cfg 0 devcfg Documentation Examples
psT_dma_ns dmaps Documentation Examples
psT_dmas dmaps Documentation Examples
psT_sthernet 0 emacps Documentation, Bxamples
ps7_gpio_ gpiops Documentation Exarnples
psT_iop_bus_config 0 generic
ps7_aspi0 qspips Documentation Examples i
Overview| Source
o ~=0

[21 Problerns | & Tasks [Cansole £2 - Properties | & Terminal 1) 5 Progress

DK Lag

Figure 5-19: New Project Selection

11. Enter leds_switches in the Project name field

12. Select Linux as the OS Platform in the Target Software and select Finish.

13. Select C as the Language.

14. Click Next.

15. Select Linux Empty Application and click Finish.

Page 73 Zynq ZedBoard Concepts, Tools, and Techniques

© Copyright 2013 Xilinx

&E

3/22/2013

& XILINX

ALL PROGRAMMABLE.

Mew Project

Templates
Create one of the available templates to generate a fully-functioning

application project.

Available Templates:

Linux Empty Application A blank Linux C project.
Linux Hello World

|

Mext > | Finish

Cancel]

Figure 5-20:Add An Empty Application
16.

Add a Software Application. At this point, you will create a software platform and an

empty software project for the hardware. You will then import the

hello_world_linux.c into the project, and SDK will automatically build and produce

an elf (Executable and Load Format) file.
17. Right Click leds_switches and select Import.

18.

© Copyright 2013 Xilinx
Page 74

Zynq ZedBoard Concepts, Tools, and Techniques

In the Import dialog box, select General = File System and select Next.

3/22/2013

& XILINX

ALL PROGRAMMABLE

Impert (ESIE ==
Select \
Import resources from the local file system into an existing project. g - E

Select an import source:

type filter text

4 [= General
@‘ Archive File
17 Ewisting Projects into Workspace
[, File System
[Preferences
» = CfC++
. [= Remote Systems
» = Run/Debug
. = Team

'f?:' < Bac Mext = Finish Cancel ﬂ

Figure 5-21:Import .c file

19. Browse to the directory in which you saved the files that you downloaded. Select

leds_switches.c and select Finish . In this example, the directory is C:\zedboard-
143\files.

Check that the application is built without errors. Check the message log in the Console
window.

Debugging the Linux Application: Using SDK Remote Debugging

1.

N o o kA w

Right-click leds_switches and select Debug as > Debug Configurations..
The Debug Configuration wizard opens.

In the Debug Configuration wizard, right-click Remote ARM Linux
Application and click New.

In the Connection drop-down list, click New.
The New Connection wizard opens.

Click the SSH Only tab and click Next.
In the Host Name tab, type the target board IP (it should be 192.168.1.10)
Set the connection name and description in the respective tabs.

© Copyright 2013 Xilinx

Page 75 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

8.

10.

11.

12.

13.

14.

15.

16.

17.

ALL PROGRAMMABLE

Click Finish to create the connection.

In the Debug Configuration wizard, under Remote "Absolute File Path for

C/C++ Application,” click the Browse button E] The Select Remote C/C++
Application File wizard opens.

Do the following:
a. Expand the root directory. It opens the Enter Password wizard.

b. Provide the user ID and Password (root/root); select the Save ID and Save
Password options.

c. Click OK.

The window displays the root directory contents, because you previously
established the connection between the Windows host machine and the target
board.

d. Right-click on the “/” in the path name and create a new directory; name it
Apps.

e. Inthe Apps directory, create a new file titled leds_switches_0.elf.
f. Provide an application absolute path, such as /Apps/leds_switches_0.elf.

Click Apply.

Click Debug.

The Debug Perspective opens.
&)

Step through the code or run the code, and watch the messages in the console
window. AT the same time, you will notice the values of the Variables in the
window on the top left hand side, show the status of the switches and LEDs.

Turn off the Verbose console mode - in the console window.

The Console window displays the values of the LEDs and Switches, and Prints
‘Hello World’.

Change the switch settings, and re-run the application to see the appropriately
different values reported.

Exit SDK

© Copyright 2013 Xilinx

Page 76 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE

Chapter 6 Further “How-to’s” and Examples

Further examples on a variety of ZedBoard topics are explored and explained on
ZedBoard.org. In particular, Zynqgeek Blog (http://zedboard.org/zynggeek) contains
helpful step-by-step instructions on several topics in particular:

1. Creating a Custom Peripheral
This webpage describes how to create a custom peripheral in the
Programmable Logic portion of the Zyng-7000 device on the ZedBoard, and
to communicate with it via the ARM Processing Subsystem. This design
example follows the same steps as described in Chapter 2, starting with
creating a PlanAhead project and exporting it to SDK.

2. Talking to a Custom Peripheral
Once you’ve created a Custom Peripheral, this webpage explains how to use
the Software Template created via the same custom peripheral wizard.

In addition to Zynqgeek’s Blog, there are other useful links for the registered
ZedBoard user on ZedBoard.org. Here is a sampling of the resources available to the
registered members of the website:

3. Building a Zyng Video Design from Scratch
Leverage the processing and hardware acceleration capabilities of the Zynq
SoC in building a HDMI pass-through video design. The latest version is
linked above and may require additional mezzanine based hardware to the
ZedBoard.

4. Community Projects
Follow the latest ZedBoard community projects on ZedBoard.org. These
projects range from software defined radios to further tutorials to widen your
knowledge of Zynq, the Zedboard and Xilinx design tools.

5. Support and Troubleshooting
There is a very active and vibrant Zyng and ZedBoard community on
ZedBoard.org. For help in using the ZedBoard, the Support Forums provide
an invaluable community based resource that can be leveraged.

Also helpful are Zynq specific documentation published on the Xilinx website. In
particular, these two user guides expand on concepts covered in this document:

6. Zyng-7000 All Programmable SoC Software Developers Guide
Summarizes the software-centric information required for designing with the
Xilinx Zyng-7000 Extensible Processing Platform (EPP) devices.

© Copyright 2013 Xilinx
Page 77 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

http://zedboard.org/zynqgeek
http://www.zedboard.org/content/creating-custom-peripheral
http://www.zedboard.org/content/talking-custom-peripheral-bare-metal
http://www.zedboard.org/sites/default/files/design/FMC_IMAGEON_Building_Video_Design_Tutorial_14_4_20130110.zip
http://www.zedboard.org/sites/default/files/design/FMC_IMAGEON_Building_Video_Design_Tutorial_14_4_20130110.zip
http://www.zedboard.org/projects
http://www.zedboard.org/projects
http://www.zedboard.org/forums/zedboard-english-forum
http://www.zedboard.org/forums/zedboard-english-forum
http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf

& XILINX

ALL PROGRAMMABLE

7. Zyng-7000 All Programmable SoC Technical Reference Manual
This user guide serves as a technical reference manual for the Zyng-7000 All
Programmable SoC (AP SoC).

© Copyright 2013 Xilinx
Page 78 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

& XILINX

ALL PROGRAMMABLE

Appendix A

Application Software

A.1 About the Application Software

The system you designed in this guide requires application software for the
execution on the board. This appendix describes the details about the application
software.

The main() function in the application software is the entry point for the execution.
This function includes initialization and the required settings for all peripherals
connected in the system. It also has a selection procedure for the execution of the
different use cases, such as AXI GPIO and PS GPIO using EMIO interface. You can
select different use cases by following the instruction on the serial terminal.

A.2 Application Software Steps

Application Software comprises the following steps:

Initialize the AXI GPIO module.

1. Set a direction control for the AXI GPIO pin as an input pin, which is connected
with BTNU push button on the board. The location is fixed via LOC constraint
in the user constraint file (UCF) during system creation.

Initialize the AXI TIMER module with device ID 0.
3. Associate a timer callback function with AXI timer ISR.

4. This function is called every time the timer interrupt happens. This callback
switches on the LED ‘LD9’ on the board and sets the interrupt flag.

5. The main() function uses the interrupt flag to halt execution, wait for timer
interrupt to happen, and then restarts the execution.

6. Set the reset value of the timer, which is loaded to the timer during reset and
timer starts.

7. Set timer options such as Interrupt mode and Auto Reload mode.
8. Initialize the PS section GPIO.

© Copyright 2013 Xilinx
Page 79 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

10

11.

12.

ALL PROGRAMMABLE

Set the PS section GPIO, channel 0, pin number 10 to the output pin, which is
mapped to the MIO pin and physically connected to the LED ‘LD9’ on the
board.

. Set PS Section GPIO channel number 2 pin number 0 to input pin, which is

mapped to PL side pin via the EMIO interface and physically connected to the
BTNR push button switch.

Initialize Snoop control unit Global Interrupt controller. Also, register Timer
interrupt routine to interrupt ID '91', register the exceptional handler, and enable
the interrupt.

Execute a sequence in the loop to select between AXI GPIO or PS GPIO use
case via serial terminal.

The software accepts your selection from the serial terminal and executes the
procedure accordingly.

After the selection of the use case via the serial terminal, you must press a push
button on the board as per the instruction on terminal. This action switches off
the LED ‘LD9’, starts the timer, and tells the function to wait for the Timer
interrupt to happen. After the Timer interrupt happens, LED 'LD9" switches ON
and restarts execution.

For more details about the API related to device drivers, refer to the Zyng-7000
Software Developers Guide (UG821) linked to in the previous chapter.

A.3 Application Software Code

Below is the Application software for the system:

/

LR S S S e e e S S S N .

*/

Copyright (c) 2009 Xilinx, Inc. All rights reserved.

Xilinx, Inc.

XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A
COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR
STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION
IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE
FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.
XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO
THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO
ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE
FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

helloworld.c: simple test application

#include <stdio.h>
#include "platform.h"
#include "xil types.h"
#include "xgpio.h"
#include "xtmrctr.h"
#include "xparameters.h"
#include "xgpiops.h"

© Copyright 2013 Xilinx

Page 80 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

#include "xil io.h"

#include "xil exception.h"

#include "xscugic.h"

static XGpioPs psGpioInstancePtr;

extern XGpioPs Config XGpioPs ConfigTable[XPAR XGPIOPS NUM INSTANCES];
static int iPinNumber = 7; /*Led LD9 is connected to MIO pin 7*/
XScuGic InterruptController; /* Instance of the Interrupt Controller */
static XScuGic Config *GicConfig;/* The configuration parameters of the

controller */

static int InterruptFlag;
extern char inbyte (void);

void Timer InterruptHandler (void *data, u8 TmrCtrNumber)

{

}

print ("\r\n");

print ("\r\n");

print ("GRRECECERRRARACREARRAECRERRARRARRERR\Lr\n") ;
print (" Inside Timer ISR \n \r ");

XTmrCtr Stop (data, TmrCtrNumber) ;

// PS GPIO Writing

print ("LED 'LD9' Turned ON \r\n");

XGpioPs WritePin (&psGpioInstancePtr, iPinNumber,1);
XTmrCtr Reset (data, TmrCtrNumber) ;

print (" Timer ISR Exit\n \n \r");

print ("CRRERCERERQAERAARAARERAREARRERERER\r\n") ;
print ("\r\n");

print ("\zr\n");

InterruptFlag = 1;

int SetUpInterruptSystem (XScuGic *XScuGicInstancePtr)

{

}

/*
* Connect the interrupt controller interrupt handler to the hardware
* interrupt handling logic in the ARM processor.

*/
Xil ExceptionRegisterHandler (XIL EXCEPTION ID_ INT,
(Xil ExceptionHandler) XScuGic InterruptHandler,
XScuGicInstancePtr) ;
/*
* Enable interrupts in the ARM
*/
Xil ExceptionEnable () ;
return XST_ SUCCESS;

int ScuGicInterrupt Init(ul6 DeviceId,XTmrCtr *TimerInstancePtr)

{

int Status;

/*

* Initialize the interrupt controller driver so that it is ready to
* use.

*/
GicConfig = XScuGic_ LookupConfig (DevicelId) ;
if (NULL == GicConfig) {

return XST FAILURE;
}
Status = XScuGic CfgInitialize(&InterruptController, GicConfig,
GicConfig->CpuBaseAddress) ;
if (Status != XST SUCCESS) {
return XST FAILURE;
}
/*
* Setup the Interrupt System
*/
Status = SetUpInterruptSystem(&InterruptController);
if (Status != XST SUCCESS) {
return XST FAILURE;
}
/*
* Connect a device driver handler that will be called when an

© Copyright 2013 Xilinx

Page 81 Zynq ZedBoard Concepts, Tools, and Techniques

3/22/2013

& XILINX

}

ALL PROGRAMMABLE.

* interrupt for the device occurs, the device driver handler performs
* the specific interrupt processing for the device
*/
Status = XScuGic Connect (&InterruptController,
XPAR FABRIC AXI TIMER 0 INTERRUPT INTR,
(Xil ExceptionHandler)XTmrCtr InterruptHandler,
(void *)TimerInstancePtr);
if (Status != XST SUCCESS) {
return XST FAILURE;
}
/*
* Enable the interrupt for the device and then cause (simulate) an
* interrupt so the handlers will be called
*/
XScuGic Enable (&InterruptController, XPAR FABRIC AXI TIMER 0 INTERRUPT INTR);
return XST SUCCESS;

int main ()

{

static XGpio GPIOInstance Ptr;
XGpioPs_Config*GpioConfigPtr;
XTmrCtr TimerInstancePtr;
int xStatus;
u32 Readstatus=0,0ldReadStatus=0;
//u32 EffectiveAdress = 0xE000A000;
int iPinNumberEMIO = 54;
u32 uPinDirectionEMIO = 0x0;
// Input Pin
// Pin direction
u32 uPinDirection = 0x1;
int exit flag,choice,internal choice;
init platform();
/* data = *(u32 *) (0x42800004) ;
print ("OK \n");
data = *(u32 *) (0x41200004) ;
print ("OK-1 \n");
*/
print ("##### Application Starts #####\n\r");
print ("\r\n");

//Step-1 :AXI GPIO Initialization
xStatus = XGpio Initialize (&GPIOInstance Ptr,XPAR AXI GPIO 0 DEVICE ID);
if (XST_SUCCESS != xStatus)

print ("GPIO INIT FAILED\n\r");

//Step-2 :AXI GPIO Set the Direction

//Step-3 :AXI Timer Initialization

xStatus = XTmrCtr Initialize(&TimerInstancePtr,XPAR AXI TIMER 0 DEVICE ID);

if (XST_SUCCESS != xStatus)

print ("TIMER INIT FAILED \n\r");

//Step-4 :Set Timer Handler

XTmrCtr_SetHandler (&TimerInstancePtr,
Timer InterruptHandler,
&TimerInstancePtr) ;

//Step-5 :Setting timer Reset Value

XTmrCtr_ SetResetValue (&TimerInstancePtr,
0, //Change with generic value

0x£0000000) ;

//Step-6 :Setting timer Option (Interrupt Mode And Auto Reload)

© Copyright 2013 Xilinx

Page 82 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

XTmrCtr SetOptions(&TimerInstancePtr,
XPAR AXI TIMER 0 DEVICE_ID,
(XTC_INT MODE OPTION | XTC AUTO RELOAD OPTION));

//Step-7 :PS GPIO Intialization

GpioConfigPtr = XGpioPs_LookupConfig (XPAR _PS7_ GPIO O DEVICE ID);
if (GpioConfigPtr == NULL)
return XST FAILURE;
xStatus = XGpioPs CfgInitialize (&psGpioInstancePtr,
GpioConfigPtr,
GpioConfigPtr->BaseAddr) ;
if (XST_SUCCESS != xStatus)
print (" PS GPIO INIT FAILED \n\r");

//Step-8 :PS GPIO pin setting to Output

XGpioPs_SetDirectionPin (&psGpioInstancePtr, iPinNumber,uPinDirection);
XGpioPs SetOutputEnablePin (&psGpiolnstancePtr, iPinNumber,1);

//Step-9 :EMIO PIN Setting to Input port

XGpioPs SetDirectionPin (&psGpioInstancePtr,
iPinNumberEMIO, uPinDirectionEMIO) ;
XGpioPs SetOutputEnablePin (&psGpiolInstancePtr, iPinNumberEMIO,0);

//Step-10 : SCUGIC interrupt controller Initialization
//Registration of the Timer ISR

xStatus=
ScuGicInterrupt Init (XPAR PS7 SCUGIC 0 DEVICE ID,&TimerInstancePtr);
if (XST_SUCCESS != xStatus)

print (" :(SCUGIC INIT FAILED \n\r");
] e
//Step-11 :User selection procedure to select and execute tests
e N N N S e e . N . A L N N S
exit flag = 0;
while (exit flag != 1)

{
print (" SELECT the Operation from the Below Menu \r\n");
print ("####FEHEEEEEHEEEHHEES Menu Starts ####4SEEE SR EERESSEE 2 \R") ;
print ("Press 'l' to use NORMAL GPIO as an input (BTNU switch)\r\n");
print ("Press '2' to use EMIO as an input (BTNR switch)\r\n");
print ("Press any other key to Exit\r\n");
print (" ####d4#EH4EEESEHHEES Menu Ends #4444 44444 # R E B EHHE S A\ \n") ;

choice = inbyte();
printf ("Selection : %c \r\n",choice);
internal choice = 1;

switch (choice)

case 'l':
exit flag = 0;
print ("Press Switch 'BTNU' push button on board \r\n");
print (" \r\n");
while (internal choice != '0")
{
Readstatus = XGpio DiscreteRead(&GPIOInstance Ptr, 1);
if (1== Readstatus && 0 == OldReadStatus)
{
Print (M888888888888888888858858888585555555588888888 \r\n")
print ("BTNU PUSH Button pressed \n\r");
print ("LED 'LD9' Turned OFF \r\n");
XGpioPs WritePin (&psGpioInstancePtr, iPinNumber, 0);
//Start Timer
XTmrCtr Start (&TimerInstancePtr,0);
print ("timer start \n\r");
//Wait For interrupt;
print ("Wait for the Timer interrupt to tigger \r\n");

© Copyright 2013 Xilinx
Page 83 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

& XILINX

ALL PROGRAMMABLE.

}

}

Print (M85555885555558555588555555855555585855588855588\r\n")
print (" \r\n");

while (InterruptFlag != 1);

InterruptFlag = 0;

print (" ####HHHHFFHEHHFFHEAAAAS A FFFERBHE AR FEE\D\n ") ;
print ("Press '0' to go to Main Menu \n\r ");

print ("Press any other key to remain in AXI GPIO Test \n\r ");
print (" ###HEHFFFFEEFFAFFERFAA AR AFFERFAAFFEFRAFF D\ ") ;

internal choice = inbyte();
printf ("Select = %c \r\n",internal choice);
if (internal_choice != '0")

{
print ("Press Switch 'BTNU' push button on board \r\n");

}

OldReadStatus = Readstatus;

print (" \r\n");
print (" \r\n");

break;
case '2'
[]~ e e

exit flag = 0;

print ("Press Switch 'BTNR' push button on board \r\n");
print (" \zr\n");

while (internal choice != '0")

{

}

Readstatus = XGpioPs_ ReadPin (&psGpiolnstancePtr,

1iPinNumberEMIO) ;

if (1== Readstatus && 0 == OldReadStatus)

{

}

Print (8858555555 55555555555555555558555555858555888883\r\n")
print ("BTNR PUSH Button pressed \n\r");

print ("LED 'LD9' Turned OFF \r\n");

XGpioPs WritePin (&psGpioInstancePtr, iPinNumber,0);

//Start Timer

XTmrCtr Start (&TimerInstancePtr,0);

print ("timer start \n\r");

//Wait For interrupt;

print ("Wait for the Timer interrupt to tigger \r\n");

Print ("8585855588555555855558585555858555585858858585888888\r\n");

print (" \r\n");

while (InterruptFlag != 1);

InterruptFlag = 0;

print (" ####EHHFFFHEREFFFERBAAFFE A FFFER A FEFERRFEE D\ ") ;
print ("Press '0' to go to Main Menu \n\r ");

print ("Press any other key to remain in EMIO Test \n\r ");
print (" ####SHFEHEEHEEREEHEHRESSE S E SRS SRS SR E S EEE\\Dn ") ;
internal choice = inbyte();

printf ("Select = %c \r\n",internal choice);
if (internal choice != '0")

{
print ("Press Switch 'BTNR' push button on board \r\n");

}

OldReadStatus = Readstatus;

print (" \r\n");
print (" \r\n");
break;

default :
exit flag = 1;
break;

}
}

print ("\r\n");
"***********\r\nll);
"BYE \r\n");

prlnt "***********\r\nﬂ);

print

(
(
print(
(

Page 84

© Copyright 2013 Xilinx
Zynq ZedBoard Concepts, Tools, and Techniques

3/22/2013

& XILINX

ALL PROGRAMMABLE

cleanup platform();
return 0;

}

© Copyright 2013 Xilinx
Page 85 Zynq ZedBoard Concepts, Tools, and Techniques 3/22/2013

