L XILIN

ZedBoard: Zynq-7000

AP SoC Concepts,

Tools. and Techniaues
A Hands-0On Guide to

Effective Embedded System
Design

ZedBoard (v14.3)

& XILINX

ALL PROGRAMMABLE-

Notice of Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx
products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all
faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory
of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials
(including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or
damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the
Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited
Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-
safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx
products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2012 Xilinx
Page 1 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

e

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. All other

trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date Version Revision
8/20/2012 14.1 First version
10/15/2012 | 14.3 Update for Xilinx ISE 14.3
© Copyright 2012 Xilinx
Page 2 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

L XILIN

Table of Contents

Chapter 1 INtrOTUCTIONcuiiiiiieieiee ettt nreas 6
1.1 ADOUL ThIS GUIAR ...oveieiiiiiesieceseee bbb 6
111 Take aTeSEDIIVE! ... e e 6
1.1.2 Additional DOCUMENTALION.......ccoiiiiiiiiriiiiesiisieeee e 7
113 TrainiNg LaDS ..o e 7
1.2 How Zyng AP SoC and Xilinx software Simplify Embedded Processor Design 7
1.3 What You Need to Set Up Before Startingccoccveeeveenennnennecen e, 9
1.3.1 Software Installation REQUIrEMENTS:ccoveiieeieiiere e 9
1.3.2 Hardware Requirements for this GUIdEcccoveriiiiienenienece e 10
Chapter 2 Embedded System Design Using the Zynqg Processing System.................. 11
2.1 Embedded System CONSIIUCTIONccueiiiiieiiiie e 13
2.1.1 Take a Test Drive! Creating a New Embedded Project With a Zynq
ProCESSING SYSTEIM ...ttt ettt nre et s 13
2.1.2 Take a Test Drive! EXporting t0 SDKc.cccviiiiiiiiiesiee e, 22
2.1.3 Take a Test Drive! Running the “Hello World” Application 24
2.1.4 Additional INfOrmation ..o 30
Chapter 3 Embedded System Design Using the Zynq Processing System and
Programmable LOGIC.......ecuiiieiireie ettt te et esna e e nneeeeenes 32
3.1 Adding soft IP in the PL to interface with the Zynq PS..........c.cccoiiiiiiiinnenn. 32
3.1.1 Take a Test Drive! Check Functionality of IP instantiated in the PL......... 34
3.1.2 Take a Test Drive! Working with SDKccccoiviriiiiniinee e, 41
Chapter 4 Debugging with SDK and ChipSCOpe Pro.......cccccevvviieveeieieesr e 42
4.1 Take a Test Drive! Debugging with Software, Using SDK...........ccccccevervenenn. 42
4.2 Take a Test Drive! Debugging Hardware Using ChipScope Software.............. 44
Chapter 5 Booting Linux and Application Debugging Using SDKc.cccccovennne. 48
5.1 REQUITEIMENTS.eiiiiiieieiete ettt bbbttt bbbt nes 48
5.2 Booting Linux 0n a ZedBoard............cccceeieiieiieie e 49
T80 R = 1o T | 0|V 1= 1 oo TR 49
5.2.2 Booting LinuX from JTAG........coceiieieciece e 50
5.2.3 Take a Test Drive! Booting Linux in JTAG Mode..........ccccevvrininininennnnn. 50
5.2.4 Booting Linux from QSPI FIashcccccveviiiiiiiiesiecece e, 53
5.2.5 Take a Test Drive! Booting Linux from QSPI Flash...........c.cccooiiiinnnnn. 53
5.2.6 Booting Linux from the SD Card...........cccccveviiiiiiieieiicsr e, 58
5.2.7 Take a Test Drive! Booting Linux from the SD Cardcccceovvvrivennne 58
5.3 Hello World EXample.........cooiioiiic e 59
5.3.1 Take a Test Drive! Running a “Hello World” Applicationc.c....... 59
5.4 Controlling LEDs and Switches in Linux Example.......c..cccoovoiiiiiinciciienen, 66
5.4.1 Take a Test Drive! Controlling LEDs and Switches in a Linux Application
66
APPENAIX A ettt b bbbt nes 78

© Copyright 2012 Xilinx
Page 3 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

L XILIN

Table of Figures

Figure 2-1: Design FIOW fOr ZYNQccoiiiiiiiiiiieeiee e 12
Figure 2-2: New Project Wizard Part SEIECtioN...........cccoovveveiieiieeiree e 14
Figure 2-3: PIanANEad GUIooiiii e 15
Figure 2-4: Platform Studio dialog DOXcccoevviiiiiii e 16
Figure 2-5:Create New Project BSB WIzZard.........cccccueiiieienieneenesie e 17
Figure 2-6: Peripheral Configuration Wizard............c.cccoovveveiieiieneec e 18
Figure 2-7:Processing System 7 in the Bus Interface tab ..o, 19
Figure 2-8: System Assembly View of the Zynq Processing System Block Diagram.... 20
Figure 2-9: Selecting ZedBoard TeMPIALE..........c.ocveiiiiiiieiiie s 21
Figure 2-10: Updated Zynq BIOCK Diagramcccccveeiieeieeieiiese e se e e 22
Figure 2-11: Address Map in SDK system.Xml Tab........cccooceiiiiiiiiiiiieieeeceie e 23
Figure 2-12: ZedBoard Power switch and Jumper settings.......cccccvvveiiiiiiieiiiiinnnns 25
Figure 2-13:Serial Terminal SettiNgS........ccoueiviieiieiiee e 26
Figure 2-14:Application ProjeCt WIZard..........coceoeeiiiieieeiese e 27
Figure 2-15:Hello World from Available TemMPIates........cccccevviieeiieieiiereee e 28
Figure 2-16: SUCCESSTUl BUIIT........ccoiiiiiiiieee s 29
Figure 2-17:"Hello World" on the Serial Terminalc.cccooviieiiiiiiiieieccceee e 30
Figure 3-1: BIOCK DIAQIamc.couiiiiiiiie ettt st 33
Figure 3-2:Completed Port CONNECLIONScecveiieieeieieese e sae e 36
Figure 3-3:Processing_system7_0 Expanded and M_AXI_GPO_ACLK Connected...... 37
Figure 3-4:Interrupt Connection Dialog BOX........cccovveiiiiieieiie e 38
Figure 3-5:Timer Interrupt Connected on the PL SIAE........cccooveiieiiiiinieeeeseeeeee e 38
Figure 3-6:Connected chipSCOpe_aXi_MONITONccccvueiiveieeiesieseeie e se e 38
Figure 3-7: GPIO Port Not Connected to External POrtS.........ccocoeviiiiienienicnienieie e 39
Figure 3-8: Design Rule CheCk Warnings.........ccooueivereiieeieee e e s se e see s see s 39
Figure 3-9: system.ucf File Added..........cooiiiiiiiii s 40
Figure 3-10:Program FPGA Dialog BOXccccueiieiieiiiieiesicseess e se e sa e 41
Figure 4-1: Debug Perspective SUSPENTEcoveiiiiiiieiesie e 43
Figure 4-2: Trigger Setup Window, MON_AXI_ARVALID Setting........cccccvevvervarennnnnn 45
Figure 4-3: Trigger Condition Dialog BOXc.cocueiiriiiieiiiiesienesie e 46
Figure 4-4:Waveform captured in ChiPSCOPE.......cueiveieiieerieeie e se e se e 47
Figure 5-1: Linux Boot Process on the ZedBoardccooeveiieiiiiin e 50
Figure 5-2:Jumper Settings to boot in JTAG MOde.........cccoviiiiiieieice e 51
Figure 5-3:Creating a Zynq QSPI BOOt IMAQEccveiiiiiie e 55
Figure 5-4: Serial Terminal Window showing QSPI programming..........c.ccccceeevvveieennenn 57
Figure 5-5:Serial Terminal Window showing Linux Booting............cccceevvveveieeieeniennnn 58
Figure 5-6:Jumper Settings to boot from SD Card...........c.coovvieeiinenc e 58
Figure 5-7: New Project SEIECHIONccviiiiiie e 60
Figure 5-8: APPlICAtiON PrOJECToviiviiiiiiiiieieeee e 61
Figure 5-9:Add An Empty AppliCatioNcceoiiiiiiiee e 62
Figure 5-10:1mMpPOrt .C Tl ..o 63
Figure 5-11: Select hello_ WOrld_TINUX.C.......ccviviiiiiiec e 64
Figure 5-12:Serial Teriminal Window showing Linux BOOtiNg............ccccevvrininieiennnn. 65
Figure 5-13: Serial Terminal Window showing hello_world_linux running 66

© Copyright 2012 Xilinx
Page 4 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XL

Figure 5-14: New Project Wizard Part Selection............coeveiiieiiiin e 68
Figure 5-15: PIaNANEAA GUIooiiiiicc et 69
Figure 5-16: Platform Studio dialog DOXccooueiiiiiiiiiieiece s 70
Figure 5-17:Create New Project BSB Wizard...........cccccovveveeieiieiree e se e 70
Figure 5-18: Peripheral Configuration Wizard............cccooeierienieniie e 72
Figure 5-19: NewW Project SEIECHIONc.ccveiiiie e 74
Figure 5-20:Add An EmMpty APPHCALIONocviiiiiiiiieie e 75
Figure 5-21:1MpPort .C Fll.....cveie e 76

© Copyright 2012 Xilinx
Page 5 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

£ XILIN

Chapter 1
Introduction

1.1 About this Guide

This document provides an introduction to using the Xilinx® ISE® WebPACK
software to build a Zyng™-7000 All Programmable SoC (AP SoC) design. The
examples target the ZedBoard (http://www.zedboard.org) using ISE Design Suite
14.3. The required software is included with the ZedBoard Kkit.

Note: The Test Drives in this document were created using Windows 7 64-bit operating system.
Other versions of Windows might provide varied results.

The Zyng-7000 family is the world's first All Programmable SoC. This innovative
class of product combines an industry-standard ARM® dual-core Cortex™-A9
MPCore™ processing system with Xilinx 28 nm unified programmable logic
architecture. This processor-centric architecture delivers a complete embedded
processing platform that offers developers ASIC levels of performance and power
consumption, the flexibility of an FPGA, and the ease of programmability of a
microprocessor.

This guide describes the design flow for developing a custom Zyng-7000 AP SoC
based embedded processing system using the Xilinx ISE WebPACK software tools.
It contains the following four chapters:

« Chapter 1, (this chapter) provides a general overview.

« Chapter 2, “Embedded System Design Using the Zynq Processing System” describes the tool
flow for the Zynqg Processing System (PS) to create a simple standalone "Hello World"
application.

« Chapter 3, “Embedded System Design Using the Zynq Processing System and Programmable Logic”
describes how to create a system utilizing both the Zynq PS as well as the Programmable Logic
(PL).

« Chapter 4, “Debugging with SDK and ChipScope Pro” provides debugging debugging techniques
via software (using SDK Debug) and Hardware (using the ChipScope™ software).

« Appendix A, Application Software describes details of the application needed for the example
design used in this guide.

1.1.1 s

The best way to learn a software tool is to use it, so this guide provides
opportunities for you to work with the tools under discussion. Procedures for sample

Take a Test Drive!

© Copyright 2012 Xilinx
Page 6 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

http://www.zedboard.org/

£ XILINX

OGRAMMABLE

projects are given in the Test Drive sections, along with an explanation of what is
happening behind the scenes and why you need to do it.

Test Drives are indicated by the car icon, as shown beside the heading above.

1.1.2 Additional Documentation

For further information, refer to:

e http://www.xilinx.com/support/documentation/zyng-7000.htm

e http://www.zedboard.org

¢ Xilinx Design Tools: Installation and Licensing Guide (UG798):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/iil.pdf

¢ Xilinx Design Tools: Release Notes Guide (UG631):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14 1/irn.pdf

¢ Xilinx® Documentation:
http://www.xilinx.com/support/documentation

e XilinxGlossary:
http://www.xilinx.com/support/documentation/sw _manuals/glossary.pdf

e Xilinx Support:_http://www.xilinx.com/support/

1.1.3 Training Labs

Some Test Drives have associated training labs that you can use for further practice
with the given tasks. When applicable, a description of the lab is provided at the end
of the Test Drive.

1.2 How Zyng AP SoC and Xilinx software Simplify Embedded
Processor Design

The Zyng-7000 All Programmable SoC reduces system complexity by offering an
dual core ARM Cortex-A9 processing system and hard peripherals coupled with

Xilinx series 7 28nm programmable logic all integrated on a single SoC. It is the

first of its kind in the market and has tremendous potential as a tightly integrated

system.

To simplify the design process, Xilinx offers several sets of tools. The ZedBoard kit
includes ISE WebPACK software, and the appropriate device-locked ChipScope Pro
tools. ISE WebPACK includes the “PlanAhead Design and Analysis tools,
Embedded Processing” for the Zynq XC7Z020 AP SoC, as well as a limited version
of the built-in simulator, 1Sim. The embedded processing component of the ISE
WebPACK tools includes Xilinx Platform Studio (XPS) as well as the Software

© Copyright 2012 Xilinx
Page 7 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/iil.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/irn.pdf
http://www.xilinx.com/support/documentation
http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support/
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm

Development Kit (SDK). The Zyng PS may be used without anything programmed
in the Programmable Logic (PL). However, in order to use any soft IP in the PL, or
to route PS dedicated peripherals to device pins for the PL, programming of the PL
is required.

With this, you have all the Xilinx tools required to work with your ZedBoard. It is a
good idea to get to know the basic tool names, project file names, and acronyms for
these tools. You can find Xilinx software-specific terms in the Xilinx

Glossary: http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

Xilinx ISE WebPACK

ISE® WebPACK™ design software is the free, downloadable, fully featured front-to-
back FPGA design solution for Linux, Windows XP, and Windows 7, supporting the
ZedBoard.

And new in ISE Design Suite 14 — WebPACK now supports embedded processing design
for the Zyngq™-7000 AP SoC..

The ISE WebPACK tools include PlanAhead, Xilinx Platform Studio and the Software
Development Kit, amongst others. A complete description of ISE WebPACK is
available: http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm

PlanAhead Design and Analysis Tools

PlanAhead software provides a central cockpit for design entry in RTL, synthesis
and verification. PlanAhead offers integration with XPS for embedded processor
design (including access to the Xilinx IP catalog), and SDK to complete the
embedded processor software design. Implentation is achieved through integration
with the ISE toolflow. The implementation flow of your design may be centrally
launched from PlanAhead.

e For more information on the embedded design process as it relates to XPS, see the "Design
Process Overview" in the Embedded System Tools Reference Manual (UG111):
http://www.xilinx.com/support/documentation/xilinx14 1/est_rm.pdf

Note: For this early version of the Zynq development tools, direct simulation of the Processing
System is not available.

Xilinx Platform Studio

XPS is the development environment used for designing the hardware
portion of your embedded processor system. Specification of the
microprocessor, peripherals, and the interconnection of these components,

© Copyright 2012 Xilinx
Page 8 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=est_rm.pdf

L XILIN

along with their respective detailed configuration, takes place in XPS. You
can run XPS in batch mode or using the GUI, which is demonstrated in this
guide.

Software Development Kit

The SDK is an integrated development environment, complementary to XPS,
that is used for C/C++ embedded software application creation and
verification. SDK is built on the Eclipse open-source framework. For more
information about the Eclipse development environment, refer

to http://www.eclipse.org.

Other Components of ISE WebPACK
Other components include:

» Hardware IP for the Xilinx embedded processors
« Drivers and libraries for the embedded software development

* GNU compiler and debugger for C/C++ software development targeting the ARM
Cortex-A9 MPCore in the Zyng Processing System

 Documentation

« Sample projects

1.3 What You Need to Set Up Before Starting

Before discussing the tools in depth, it would be a good idea to make sure they are
installed properly and that the environments you set up match those required for the
"Test Drive" sections of this guide.

1.3.1 Software Installation Requirements:

1. Xilinx ISE WebPACK software tools

The PlanAhead design tool, and Embedded software tools (including XPS and SDK) as
well as ISim (limited) are included in the ISE WebPACK design software. Be sure that
the latest version of the software is installed. Apply the Device Pack addition, if it is
available.

2. Xilinx ChipScope Pro Tools

A version of the Xilinx ChipScope Pro tools that supports the ZedBoard is included with
the kit. ChipScope Pro allows you to probe the internal signals of your design much as
you would with a logic analyzer. A license will need to be generated to use the
ChipScope Pro tools.

© Copyright 2012 Xilinx
Page 9 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

http://www.eclipse.org/

£ XILIN

3. Software Licensing

Xilinx software uses FLEXnet licensing. A license is required for ISE WebPACK. A
WebPACK license does not require a host ID and, therefore, can work on any computer.
(However, the ChipScope Pro tools do require a Host ID.) To WebPACK license, run the
Xilinx License Configuration Manager (XLCM), which is automatically launched when
the installation program exits. When XLCM starts, it prompts you to register, then
automatically places the WebPACK license in the proper directory.

When the software is first run, it performs a license verification process. If it does
not find a valid license, the license wizard guides you through the process of
obtaining a license and ensuring that the Xilinx tools can use the license.

4. ZedBoard Board Definition file

The ZedBoard Board Definition File takes the form of zedboard_rev#_v#.xml, for
example, zedboard_revC_v2.xml is maintained at http://www.zedboard.org, under
the Documentation link. The board definition file is automatically installed at:
<Xilinx ISE 14.3 installation path>/ISE_DS/ISE/data/zynqconfig/board.

1.3.2 Hardware Requirements for this Guide

The ZedBoard is required to complete the tutorial. A second micro-USB cable is
required to connect both the USB-JTAG and USB-UART on-board.

© Copyright 2012 Xilinx
Page 10 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

http://www.zedboard.org/

L XILIN

Chapter 2
Embedded System Design Using the Zynq
Processing System

Now that you've been introduced to the Xilinx® software tools, you'll begin looking
at how to use it to develop an embedded system using the Zynq™ Processing
System (PS).

Zyng AP SoC consists of an ARM Cortex A9 MPCore PS which includes various
dedicated peripherals as well as a configurable PL. This offering can be used in
three ways:

1. The Zynqg PS can be used independently of the PL.

2. Soft IP may be added in the PL and connected to extend the functionality of the PS. You can
use this PS + PL combination to achieve complex and efficient design of a single System On
Chip (S0C).

3. Logic in the PL can be designed to operate independently of the PS. PS or JTAG must be used
to program the PL however.

© Copyright 2012 Xilinx
Page 11 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL

PROGRAMMABLE

The design flow is described in Figure 2-1: Design Flow for Zynq

1. Launch PlanAhead

= 2. Add Embedded Source
3. Configure PS settings (launch XPS) ==t
4. Add P 5. Add Top-Level HDL "~~~ > 9. Specify hardware
(exit XPS, back to 6. Add Constraints file built from PlanAhead
L PlanAhead) 7. Generate Bitstream => and XPS
XPS -bit 10. Add Software
8. Export hardware to SDK Project & Build => _elf

=
PlanAhead ‘g..,!’ | SDK |

11. Program bitstream & .elf into Zynqg

Optional direct next step

ZedBoard

Figure 2-1: Design Flow for Zynq
The design and implementation process begins with launching the PlanAhead tools, which is the

central cockpit from which design entry through bitstream generation is completed.

From PlanAhead, Add an Embedded Source, to include the ARM Cortex A9 Processing System
(PS) in the project. XPS is then automatically launched from PlanAhead. Selection of the PS and
optional addition of PL peripheralsoccur within XPS.

In XPS, configure settings to select the ZedBoard and make the appropriate design decisions such
as selection/de-selection of dedicated PS 1/0 peripherals, memory configurations, clock speeds,
etc.

At this point, you may also optionally add soft IP from the IP catalog or create your own
customized IP. When finished close XPS to return to PlanAhead.

Back in the PlanAhead environment, automatically generate a top-level HDL wrapper for the
processing system.

Ensure that the appropriate PL related design constraints are defined as required. These constraints
would typically be useful to ensure that signals to general purpose 1/O such as the switches, LEDs,
and Push Buttons on the ZedBoard are routed appropriately. This is done via the creation of a .ucf
constraints file in the PlanAhead project.

Generate the bitstream for configuring the logic in the PL if soft peripherals or other HDL are
included in the design, or if hard peripheral 10 was routed through the PL. At this stage, the
hardware has been defined in <system.xml>, and if necessary a bitstream <system.bit> has been
generated. At this point, the bitstream could be programmed into the FPGA,; or it could be done
from within SDK.

© Copyright 2012 Xilinx

Page 12 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

e

8. Now that the hardware portion of the embedded system design has been built, export it to SDK to
create the software design. (A convenient method to ensure that the hardware for this design is
automatically integrated with the software portion is achieved by Exporting the Hardware from
PlanAhead to SDK.)

9. From SDK, add a software project to associate with the hardware design exported from
PlanAhead.

10. Within SDK, for a standalone application (no operating system) create a Board Support Package
(BSP) based on the hardware platform and then develop your user application. Once compiled, a
<designname.elf> is generated.

11. The combination of the optional bitstream and the .elf file together programs the hardware and the
software functionality into the Zynq device on your ZedBoard.

2.1 Embedded System Construction

Creation of a Zynq system design involves configuring the PS to select appropriate
boot devices and peripherals. As long as the selected PS hard peripherals use
Multiplexed 10 (MIQO) connections , and no additional logic or IP is built or routed
through the PL, no bitstream is required. This chapter guides you through creating
one such design, where only the PS is used.

2.1.1 ﬁ Take a Test Drive! Creating a New Embedded Project With
a Zynq Processing System

For this test drive, you start the ISE® PlanAhead™ design and analysis tool and
create a project with an embedded processor system as the top level.

Start the PlanAhead tool.
1. Select Create New Project to open the New Project wizard.

2. Use the information in the table below to make your selections in the wizard screens

Wizard Screen System Property Setting or Command to Use
Project Name Project name Specify the project name.
Project location Specify the directory in which to store

the project files.

Create Project Subdirectory Leave this checked.

Project Type Specify the type of sources for Use the default selection, RTL Project.
your design. You can start with
RTL or a synthesized EDIF

Add Sources Do not make any changes on this screen.

© Copyright 2012 Xilinx
Page 13 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE.

Add Existing IP

Do not make any changes on this screen.

Add Constraints

Do not make any changes on this screen.

Default Part Specify

Select Boards.

Board

Select ZedBoard Zynq Evaluation and
Development Kit

New Project Summary | Project summary

Review the project summary before
clicking Finish to create the project.

E Mew Project 23
Default Part
Choose a default ¥ilinx part or board for your project. This can be changed later. g;?
Spedfy Filter
& Parts Family | Al -
pacage A -
Speed grade | All -

Reset All Filters

" ZedBoard Zyng Evaluation and Development Kit

4 %c72020cg484-1

Search: | L

10 Pin Available LuT : Block
e Sl Cfc?unt I0Bs Elements FipFaps RAMs
B virtex-5 FXT ML510 Evaluation Platform @ xcSvfx130tfF1738-2 1,733 2340 81920 81920 298 -
@ virtex-6 ML&0S5 Evaluation Platform @ wchvix240tF1156-1 1,155 500 150720 301440 416
[Spartan-3& DSP 18004 Starter Board @ xc3sd1800afos76-4 675 519 33280 33280 34
@ Spartan-34 DSP 34004 Development Board S xc3sd3400afgs76-4 675 459 47744 47744 126
@ Spartan-3E 1600F MicroBlaze Dev Board @ xc3s1600efg320-4 320 250 29504 29504 36
@ spartan-6 SPE01 Evaluation Platform @ wchslx16cs0324-2 324 232 9112 18224 32 b
@ Spartan-6 SP&05 Evaluation Platform @ wchslx45tfign484-3 484 296 27238 54576 116
[Spartan-34 Starter Kit @ xc3sTO0afgdsd-4 484 372 11776 11776]
[Spartan-3&N Starter Kit @ xc3sT00anfogda4-4 484 372 11776 11776 0 1
@ spartan-3E Starter Board @ xc3s500=fg320-4 320 232 9312 9312 20 3
@ virtex-7 VC707 Evaluation Platform @ xcTvx485tifg1751-2 1,751 700 303600 607200 1030
B Z¥NQ-7 ZC702 Evaluation Board @ wc72020cdg4984-1 484
B 2YNQ-7 2C706 Evaluation Board @ xc7z045ffg900-1 900

e [[| | g
=

1| mn |

Figure 2-2: New Project Wizard Part Selection

When you click Finish, the New Project wizard closes and the project you just
created opens in the PlanAhead design tool.

© Copyright 2012 Xilinx

Page 14 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE.

Dject_1/ 1.ppr] -

File Edit Flow Tools Window Layout View Help 3
g2 aoBE X P> D E S K T G |Z0efutLayout | K| ® Ready
Flow Navigator X« | Project Manager - project_1 X |
= = Sources _Ow x Project Summary X 0w x
[Eole] Y
=1k ¥ =3 —
(mm ‘ Qe wet R[E == &% Project Settings Edit (&) (0 Messages S
43 Design Sources =
ﬁ Project Settings - 0 Cansgh'aints 1 b Project name: project_1 Summary: 0 errars
(ﬁ Add Sources = Simulation Sources (1) Product family: Zyng-7000 0 critical warnings
g IP Catalog Project part: HCTz020dg484-1 0 warnings
@ Fun Behavioral Smulation Top module name: Mot Defined
Yl 15 (Ready, £ mpleme ion (Ready’ 3
Synthesis (Ready) S Implementation (Ready) #
4 RTL Analysis
=3 . H Part: xc7z020cg484-1 Part: xc72020cdg484-1
» g Open Elaborated Design = P - F
Libraries |c°mp'|e Order | : Strategy: PlanAhead Defaults Strategy: ISE Defaults
4 Synthesis &b Sources l 7 Templates Flow: ST Flow: ISE
Synthesis Settings Properties _ A ox
% pe =R Resources &
& Run Synthesis & = R
> @ Open Synthesized Desian Resaurce information is not available.
Implemented Timi S
4 Implementation @ e = =
% Implementation Settings Timing information is not available.
. : p
P Run Implementation Next: Run Implementation
> @ Open Implemented Design | |bM—m — o — — 1| __—
Design Runs i [E 4
4 Program and Debug
% T A, | Name Part Constraints ~ Strategy Status Progress Start Elap
itstream Settings
T == synth_1 ¥C72020clg484-1 constrs_1 PlanAhead Defaults (XST 14) Notstarted T 10%
* y pda
il Generate Bitstream el e impl_1 %c72020cg984-1 constrs_1 15E Defaults (ISE 14) Notstarted 0%
@ Launch ChipScope Analyzer ;
W Launch iMPACT M
| 1 =
5 Td Consale L'.'L‘- Messages LIS[Log Lg Reports-, (% Design Runs]

Figure 2-3: PlanAhead GUI
You'll now use the Add Sources wizard to create an embedded processor project.
1. Click Add Sources in the Project Manager.
The Add Sources wizard opens.

2. Select the Add or Create Embedded Sources option and click Next.
3. Inthe Add or Create Embedded Source window, click Create Sub-Design.

4. Type a name for the module and click OK. For this example, use the name system.
The module you created displays in the sources list.
5. Click Finish.

The PkanAhead design tool creates your embedded design source project. It recognizes that you
have an embedded processor system and starts XPS.

Continuing Your Design in XPS
You can design a new embedded system in XPS using either of two methods:

e Using the Base System Builder (BSB) Wizard

© Copyright 2012 Xilinx
Page 15 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE.

In the BSB Wizard, you can select and configure the processing system 1/0O interface and add
default peripherals to the fabric. Xilinx recommends using the BSB wizard to create the foundation
for any new embedded design project.

e Creating a Blank Project

With this option, you must manually add Processing System 7 to your design and configure the 1/0
interface.

2.1.1.1 Designing a New Embedded System Using the BSB Wizard

1. The dialog box opens, and asks if you want to create a Base System using the BSB Wizard.
Select Yes.

ST

e —
b e

This project appears to be a blank zyng project. Do you want to create a Base
¥ System using the BSBE Wizard?

Figure 2-4: Platform Studio dialog box

The first window of the BSB asks you to elect whether to create an AXI-based or PLB-based
system.

© Copyright 2012 Xilinx
Page 16 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE.

Mew Project

Project File |Cil\zedboard-143\project_1'project_l.sres\sources_1\edklsystemisystem, xmp Browse ...

Select an Interconnect Type

@ AXI System

| Create New XPS Project Using BSB Wizard [S|

AXI is an interface standard recently adopted by Xilinx as the standard interface used for all current and
future versions of Xilinx IP and tool flows, Details on AXI can be found in the AXI Reference Guide on
wilir. com.

PLE System

PLB is the legacy bus standard used by Xilinx that supports current FPGA families, induding Spartant and
Virtexs, PLE IP will not support newer FPGA families, so is not recommend for new designs that may
migrate to future FPGA families. Details on PLE can be found in the PLEv46 Interface Simplifications
document on xilinx. com,

Select Existing .bsb Settings File(saved from previous session)

Set Project Peripheral Repository Search Path

Browse ...

Browse ...

[Ok

—

| Cancel |

Figure 2-5:Create New Project BSB Wizard

6. Select AXI System and click OK.

7. In the Base System Builder wizard, create a project using the settings described in the table.
Where a setting or command has not been specified, accept the default values.

Wizard Screen

System Property

Setting or Command to Use

Board and System
Selection

Board

Use the default option to create a system
for ZedBoard Zynq Evaluation and
Development Kit.

Note: This is pre-populated because you
selected this board in the PlanAhead tool.

Board Configuration

This information is pre-populated based
on your board selection..

Select a System

Zynq Procesing System 7

© Copyright 2012 Xilinx
Page 17 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE

Peripheral Select and Configure Peripherals | Remove all peripherals from the list by
Configuration selecting each one and clicking Remove.
£ Base System Builder -- AXI flow ? 28 |

Peripheral Configuration

To add a peripheral, drag it from the "Available Peripherals” list to the Induded Peripherals list. To configure a core parameter, dick an the peripheral.

Select and Configure Peripherals

Available Peripherals

Induded Peripherals for Processing System? Select Al

Peripheral Names Core Parameter
10 Devices . BTMs_5Bits
= Intern.al Peripherals Core axi_gpio
ax!_bll'am_Ctﬂ Add > Use Interrupt
ax!_t!mebase_wdt LEDs_8Bits
axi_timer Core: axi_gpio
SWs_8Bits

Core: axi_gpio

[< Back H Finish H Cancel

Figure 2-6: Peripheral Configuration Wizard

8. Click Finish

9. Close the XPS window. The active PlanAhead tool session updates itself with the project
settings.

2.1.1.2 Designing a New Embedded System Using a Blank Project

If you have already created a default embedded system using the BSB wizard, skip this
section and move on to the following section, Exporting to SDK.

© Copyright 2012 Xilinx
Page 18 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE.

1. Inthe dialog box that opens to ask if you want to create a Base System using the BSB wizard,

click No.
For this example, you will manually add a processor to your system
2. Inthe IP Catalog, select Processor > Processing System to add it to the system.

A dialog box opens, asking if you want to add one processing_system7 4.0.2.ainstance to your
design.

3. Click Yes to add the processor instance.

4. Click the Bus Interfaces tab. Notice that processing_system7 was added

r B
@& Xilinx Platform Studio (EDK_P.40xb) - C\zedboard-143\project_I\project_Lsrcs\sources_liedkimedule_limodule_lxmp - [System Assembly View] lﬂ‘ﬂlﬂ
‘@ File Edit Yiew Project Hardware Debug Window Help |;”i| ®

PEEide)ics
IP Catalog o0& x| |5 zyng | Businterfaces | Ports | Addresses | [5)]| Bus Interface Filters =]
P Type & By Connection 1
Description sl = processing system? Sonnecte:t d g
H nconnecte u

B £ EDKInstall - By Bus Standard

“Analog £ By Interface Type

Arithmetic Slaves

-Bus and Bridge Masters

Clack, Reset and Interrupt Master Slaves

- Communication High-Speed Monitors

i - Communication Low-5peed Targets

DMA and Timer H Initiators

-Debug =

FPGA Reconfiguration

-General Purpose I0

Interprocessor Communication

-Memeory and Memory Controller

-PA

-Peripheral Controller

=1 Processor
- ZL MicroBlaze
‘- 2% Processing System
USER N
(l - Utility

Verification - d | i, | r

< [[} Legend
MMaster @Slave iMaster/Slave B-Target {Initiator @ Connected UUnconnected I Monitor
Search IP Catalog: TCProduction (Bllicense (paid) BLicense (eval) %Local Zipre Production WiBeta EfDevelopment
(1 Superseded Discontinued
& 1P Catalog = Design Summary =BE] System Assembly View B | & Graphical Design View x)]
Warnings +0O & X
-

[+
Console | A\ warnings ra Errors ‘

Figure 2-7:Processing System 7 in the Bus Interface tab

5. Click the Zynq tab in the System Assembly View to open the Zynq Processing System block

diagram.

© Copyright 2012 Xilinx

Page 19 Zynq ZedBoard Concepts, Tools, and Techniques

10/16/2012

& XILINX

ALL PROGRAMMABLE.

Zyng | Bus Interfaces | Ports I Addresses |

® = = &

Help Import Export Summary

— Processing System (PS)

YO Peripherals I General I Coe Application Processar Unit (APU)
Settin
MEON"™/FPU Engine NEQN™/[FPU Engine
Bank0
MIO < Cortex™-A9 Cortex™ -A9
{15:0) e System MU MPCore™ MMU MPCore™
: Level CPU CPU
Control 32KBI 32KBD 32KBI 32KBD
Regs Cache Cache Cache Cache
- *' . GIC Snoop Control Unit
MUX ! DMAS ! *
-+ MI0) - Y 612 KB L2 Cache & Controller
- 266 KB OCM
—

ocM
Central
t
T
DAP

Bank1 4
MIio FLASH Me mory Interconnect | o . &
(63:16) Interfaces -

Memorylnterfaces

-*
.
- DEVC | Programmable DDR2/3, LPDDR2
Controller

Logicto Memery
— - I 1
DMA
Syne [E[=[EEEE
|I | 5 [10[11
Input Clock Clock TETeT
ToEFRa —>lw.l v B SHEH
Extended MIO 32bGP 32bGP DMA Config | IRQ High Performance
MIO) PStoPL AXI AXI [|Channels “aps) Axl Sﬂb.&l.b Slave 4|
Clock Ports Master Slave SHA
Forts Ports
Select
GTX AMBA® Connection Legend Programmable Logic (PL) [1:)
(1256 Srrowali sstin N control, Data flows both directions
bps) Configurable AXI3 32 bitic4 bit PCle
AXI3 64 bit F AXI3 32 bit | AHB 32 bit | APE 32 bit Gen2

Figure 2-8: System Assembly View of the Zynq Processing System Block Diagram

Review the contents of the block diagram. The green colored blocks in the Zyng Processing System
diagram are items that are configurable. You can click a green block to open the coordinating
configuration window.

6. Click the Import Zynq Configurations button -
The Import Zynq Configurations dialog box opens.

7. Select a configuration template file for ZedBoard. The template selected by default is the one in
the installation path on your local machine that corresponds to the ZedBoard.

© Copyright 2012 Xilinx
Page 20 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE

Select Configuration Template

System Template (Configurations available in the installed area) :

ZedBoard Development Board Ternplate
ZC702 Development Board Template
ZC706 Development Board Template

User Template (Configurations created by User) :

Summary of selected Configuration:

»

Description e
Default configuration for ZedBoard Created 28 Aug 2012 See more at www.zedboard. org Change Log 28 Aug 2012 - Changed DDR.3 part
to MT41J128M16 HA-15E

m

Preset Info
Device Size xc7z020
Package do4a4
Speed Grade -1

Zynq PS configuration

Peripheral |Status [Signal Group MIO Freq
CAND Disabled
fcam pisabled|| [[
ENETD Enabled | default MIO 16 .. 27 [1000 MBPS
GRP_MDIO [MIO 52 ., 53
ENET1 Disabled i

en, 'SR Y lar, [

| ok || canced || heb

Figure 2-9: Selecting ZedBoard Template
8. Click OK.

9. In the confirmation window that opens to verify that the Zyng MIO Configuration and Design
will be updated, click Yes.

10. Note the change to the Zynq block diagram. The I/O Peripherals become active

© Copyright 2012 Xilinx
Page 21 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE
& System Aszembly View [E==ECR 5
Zynq | Businterfaces | Ports | Addresses |

@ <« = &=

H;Ip Import Export Summary

Processing System (PS)

/O Peripherals l General I Reset I Application Processor Unit (APU)
& | NEON™/!FPU Engine NEON™FPU Engine
L Cortex™ -AS Cortex™ -A9
. MMU MPCore™ MMU MPCore™
System
ei CPU CPU
Control 32KB | 32KB D 32KB I 32KB D 64b
Regs Cache | Cache Cache Cache AX|
- 1] GIC Snoop Control Unit ACP
¥ OMAS — Slave
:I ety ! 512 KB L2 Cache & Controller Port

f—b

Central
Interconne ct

t
(63:16) Interfaces — DAP I

e ». Memoryinterfaces
s -
DEVC] Programmable DDR2/3, LPDDR2
Controller

4

= ocm 266 KB OCM

Logicto Memory
To— AL Interc
| SMC Timing e s 2
culatio DMA [Sync
BaHs
Input Clock Clock [alsle[7]
- Teq Generation ¥ 2[3] ilzl=]
Extended MIO 32bGP 32bGP DMA Config | IR@ High Performance XADC I
(EMIO) PSto PL AXI AXI Channels AES/ AX| 32bi64b Slave _—
Clock Ports Master Slave SHA Ports
Po Ports

Programmable Logic (PL) et

PCle
Gen2

Figure 2-10: Updated Zyng Block Diagram

ST AMBA® Connection Legend
(LZ.SG Arrow direction shows control, Data flows both directions
PE) Configurable AXI3 32 biti64 bit

AXI3 84 bit J AXI3 32 bitJ AHB 32 bit APB 32 bit

11. In the block diagram, click the green 1/O Peripherals box.

Many peripherals are now enabled in the Processing System with some MIO pins assigned to them
as per the board layout of the ZC702 board. For example, UART1 is enabled and UARTO is
disabled. This is because UART1 is connected to the USB - UART connector through UART to the
USB converter chip on the ZC702 board.

12. Close the Zyngq PS MIO Configurations window.

13. Close the XPS window. The active PlanAhead tool session updates with the project settings.

01,

In this test drive, you will launch SDK from the PlanAhead tool.

Take a Test Drive! Exporting to SDK

1. Under Design Sources in the Sources pane, select and right-click system (system.xmp) and select
Create Top HDL.

PlanAhead generates the system_stub.v top-level module for the design.
2. Inthe PlanAhead tool, Select File > Export > Export Hardware for SDK.
The Export Hardware dialog box opens. By default, the Export Hardware check box is checked.

3. Check the Launch SDK check box.
4. Click OK; SDK opens.

© Copyright 2012 Xilinx
Page 22 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

£ XILIN

OGRAMMABLE

Notice that when SDK launches, the hardware description file is automatically read
in. The system.xml tab shows the address map for the entire Processing System.

C/C++ - system_hw_platformy/systemaml - Xilinx SDK = | B
File Edit Source Refactor Mavigate 5Search Run Project Xilink Tools Window Help
o = B &SN & g-e-d-e- Ty B0 B 5 (Bg C/C+
- - v -
I Project Explorer &3 = O || g3 systemaml £3 = OBz out 12 @ Ma =8
- e + | |An outline is not available.
= || system_hw_platform Hardware Platform Specification 1 OuEing 1s et avatanie

g systern_hw_platform

L systemaxml

XPS Design Report:

files//C:/zedboard-143/project 1/project 1.5dk/SDK/SDK Export/hw/system.|

|& psT_init.c Design Information

I ps7_init.h] =
@ ps7_inithtml Target FPGA Device: xc7z020

=) psl_inititcl Created With: EDK14.3

= Created On: Mon Oct 08 10:35:14 2012

Address Map for processor ps7_cortexa9_0

ps7_uart 1 0ze0001000 0ze0001f£f
ps7_sd 0 Oxe0100000 0xe0100f££
ps7_tte 0 Oxf 8001000 0xf8001f£F
ps7_ethernet 0 Oxe000b000 Ox=000bE £ £
ps7_ush 0 0xe0d002000 Oxel00Zfff
psi_gspi 0 0==000d4000 Oxe000dfff
ps7_qspi_linear 0 0xfc000000 Oxfcffffff
ps7_ddr 0 0=00100000 Ox1f£f£££££F
ps7_gpio 0 O=e000a000 Oxe000af £ £
ps7_ddre 0 Ox£8006000 0x£8006££E
ps7_dev_cfg 0 O=f 8007000 0=f8007f££

4 1 S

Overview | Source

[21 Problems | ¥2 Tasks | Bl Console 52 = Properties | 4 Terminal % @ | = *Fj~-=08
SDK Log

10:35:33 INFC : Processing command line option -hwspec C:/zedboard-143/project_l/project_. 4
4 n [3

Sk

Figure 2-11: Address Map in SDK system.xml Tab

What Just Happened?

The PlanAhead design tool exported the Hardware Platform Specification for your
design (system.xml in this example) to SDK. In addition to system.xml, there are
four more files relevant to SDK. They are ps7_init.c, ps7_init.h, ps7_init.tcl, and
ps7_init.html.

The system.xml file opens by default when SDK is launched. The address map of
your system read from this file is shown by default in the SDK window.

The ps7_init.c and ps7_init.h files contain the initialization code for the Zynq
Processing System and initialization settings for DDR, clocks, plls, and MIOs. SDK

© Copyright 2012 Xilinx

Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

Page 23

£ XILINX

OGRAMMABLE

uses these settings when initializing the processing system so that applications can
be run on top of the processing system. There are some settings in the processing
system that are fixed for the ZedBoard.

What's Next?

Now you can start developing the software for your project using SDK. The next
sections help you create a software application for your hardware platform.

215

Connect the1l2V AC/DC converter power cable to the ZedBoard barrel jack.
2. Connect a USB micro cable between the Windows Host machine and the ZedBoard JTAG (J17).

3. Connect a USB micro cable to the USB UART connector (J14) on the ZedBoard with the Windows
Host machine. This is used for USB to serial transfer.

Take a Test Drive! Running the “Hello World” Application

4. Power on the board using the switch indicated in Figure 2-7: ZedBoard Power switch and
Jumper settings.

IMPORTANT: Ensure that jumpers are set as shown in the figure.

© Copyright 2012 Xilinx
Page 24 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE.

Copuraght 2012

(ML T

PB200-248 REV' B

ZedBoard

wuw. zedboard.org
bise

foone (nio7 B
Los

Figure 2-12: ZedBoard Power switch and Jumper settings

5. Open SDK in case it is not already open.
6. Open a serial communication utility for the COM port assigned on your system.

Note: The default configuration for Zynq Processing System is: Baud rate 115200; 8 bit;
Parity: none; Stop: 1 bit; Flow control: none.

To open a serial communication terminal in SDK:

.
Select Window > Show view > Terminal and click 1 in the console view area. Configure it with
the parameters as shown below (replacing COM7 with the appropriate COM port number, verify using
Control Panel > Device Manager).

© Copyright 2012 Xilinx
Page 25 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE.

@ New Terminal Connection MBS

View Settings:
View Title: Terminal 1

Connection Type:

Serial

Settings:

Port: COM7
Baud Rate: 115200

Data Bits: 8

Stop Bits: 1

Parity: None

Flow Control: |None

Timeout (sec): 5

OK

Cancel

&

Figure 2-13:Serial Terminal Settings

7. InSDK, select File > New > Application Project.

It opens the New Project Wizard

8. Use the information in the table below to make your selections on the wizard screens.

Wizard Screen

System Property

Setting or Command to USe

Application Project

Project name

Hello_world

Use default location

Check this option

Hardware Platform

system_hw_platform

Page 26

© Copyright 2012 Xilinx

Zynq ZedBoard Concepts, Tools, and Techniques

10/16/2012

& XILINX

ALL PROGRAMMABLE.

Processor ps7_cortexa9 0
OS platform Standalone
Language C

Board Support Package

Create New : Hello_world_bsp

Click Next

Templates Available Templates

Hello World

Application Project

Create a managed make application project.

Project name: HE”D_WDrldl

Use default location
Location: | Ghzedboard-143%project_1%\project_1.sdk\SDINSDE_Export\H

Choose file systern: | default

Target Hardware

Browse...

Hardware Platform ’system_hw_platform

Processor l psf_cortexad_0

Target Software

0% Platform [Standalone

Language @C O C++

Board Support Package @ Create New Hello_world_bsp

Use existing

@ < Back Ned> || Finish

| | cancel

b e ——— T —

Figure 2-14:Application Project Wizard

© Copyright 2012 Xilinx

Page 27 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE

i B
Mew Project I. =l ﬂ

Templates .
e
Create one of the available templates to generate a fully-functioning @
application project.

Available Templates:

Dhrystone Let's say 'Hello World' in C. -

Empty Application

[wIP Echo Server

Mernory Tests

Peripheral Tests |

Zyng FSBL

Next > Finish || Cancel

Figure 2-15:Hello World from Available Templates
9. When you click Finish, the New Project wizard closes.

By doing so, the Hello_world application project and Hello_world_bsp BSP project get created
under the project explorer. Both the Hello_world application, and its BSP are compiled
automatically and the .elf file is generated.

10. Watch the messages in the Console window. When the project is successfully built, you will
see Finished building: Hello_world.elf.sze .

© Copyright 2012 Xilinx
Page 28 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE

P ind)_} p/syste iliree SO
— =
File Edit Source Refactor MNavigate Search Run Project Xilinx Tools Window Help
| 2E G @ -S-E-Gr S H-0-Qr ®F m (e
v 5 e e S
| [Project Explarer 5) = O || g system.ml |, system.mss &2 =8 "EE Out 32 @ Ma | =8|
m || &in outline is not available.
=S Hello_world_bsp Board Support Package gl |

=% Helle_world
ﬁ? Binaries >
il Includes | Modify this B5P's Settings
(= Debug =
= sre Target Information

@ Helle_world_bsp This Beard Support Package is compiled to run on the following target,

= System_h\{v’_platform Hardware Specification: C:\sthnard-143\pr0JEct_l\prnject_l.;dk\SDK\SDK_Expnrt\;ystem_hw_pl;i
[€ psT_init.c | 4
= Target Processor: ps7_cortexad_0
[E ps7_init.h
@ ps7_init.html Operating System
|2 psi_init.tcl
(5 systemaml Board Support Package 05,

Mame: standalone
Version: 3.07.a
Description: Standalone is a simple, low-level software layer. It provides access to basic proce!
as caches, interrupts and exceptions as well as the basic features of a hosted envi
standard input and output, profiling, abort and exit,

Documentation: standalone v3 07 a

Peripheral Drivers

Nrivers nresent in the Rnard Sunnaort Packane. i
4 . |]

Overview | Source |

[Problems | ¥ Tasks | & Console & = Properties| & Terminal 1| &3 4 | LE
E el wond)
Invoking: ARM Print Size
arm-xilinx-eabi-size Hello world.elf |tee "Hello world.elf.size"
text data bz= dec hex filename
47984 1096 27736 766816 12c10 Hello world.elf
Finished building: Hello world.elf.size

A

Figure 2-16: Successful Build

11. The application and its BSP are both compiled and the .elf file is generated.
12. Right-click Hello_world and select Run as > Run Configurations.

13. Right-click Xilinx C/C++ ELF and click New.

14. The new run configuration is created named Hello_world Debug.

The configurations associated with the application are pre-populated in the Main tab of the
launch configurations.

15. Click the Device Initialization tab in the launch configurations and check the settings here.

Notice that there is a configuration path to the initialization TCL file. The path of ps7_init.tcl is
mentioned here. This is the file that was generated when you imported your design into SDK; it
contains the initialization information for the processing system when using JTAG.

16. The STDIO Connection tab is available in the launch configurations settings. You can use
this to have your STDIO connected to the console. We will not use this now because we
have already launched a serial communication utility. There are more options in launch
configurations but we will focus on them later.

17. Click Run.

© Copyright 2012 Xilinx
Page 29 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILIN

ALL PROGRAMMABLE

18. "Hello World" appears on the serial communication utility.

C/C++ - Xilinx_C_HelloWorld_bsp/system.mss - Xilinx SDK ’ il N ¥
File Edit Source Refactor MNavigate Search Run Project Xilinx Tools Window Help
i} = | S e THr IO e o (B e
< < P o
I Project Explorer &2 = O |([g system.mss 22 = O[5 out 2\ @ Ma = B3O welcome = =8
g s ¥ TR - || Ar tl it lable. A"
% 7 || Xilinx_C_Helloworld_bsp Board S~ ||*" e s net evaiaie S A
JF systern_hw_platform -
[& ps7_init.c : - -
psT_inith Modify this BSP's Settings @ X|||nx SDK
@ psT_inithtml L
[Z] ps7_inittel Target Information 3
g systemaxml This Board Support Package is compiled to run on Hilinx SDK is based on Eclipse 3.6.2 and |

il
il Cibielio\orld Hardware Specification: C\zedboard-143\project,

[——
3 IEIn‘ar‘ljes Target Processor: ps7_cortexad_0 L 8] New to SDK?

il Includes

(= Debug You can get started by clicking File -= N

Operating System
(2= sre Orwatch a 5 minute screencast demaonst
@ Hilime_C_HelloWorld_bsp Board Support Package OS. W
B zed_hw_platform Mame: standalone
Version: 3.07.a
Description: Standalone is a simple, low-level Documentation
such as caches, interrupts and ex
such as standard input and outp
Documentation: standalone v3 07 a

= Getting Started with Xilink SDK

+ EDK Concepts, Tools and Technic
« Migrating from older versions of SO
+ Frequently asked guestions

Peripheral Drivers

Drivers nresent in the Rnard Sunnort Packane. i

i Known Issues

Overview | Source

[3_ Problems | ¥ Tasks | & Console | =1 Properties | 48 Terminal 1 £3 = . w
Serial: (COM29, 115200, 8, 1, None, None - COMNECTED) * Hlinx Answer Record Search

HEE S Questions, Comments..

Hello World -
+ Xilinx Forums
« Xilinx Technical Suppart
4 T (2 4 n *
o Serial: (COM29, 115200, 8, 1, None, None - CONNECTED)

Figure 2-17:""Hello World" on the Serial Terminal
19. Close SDK.

Note: There was no bitstream download required for the above software application to be executed
on the ZedBoard. The ARM Cortex A9 dual core is already present on the board. Basic initialization
of this system to run a simple application is done by the device initialization TCL script.

2.1.4 Additional Information

Board Support Package

The BSP is the support code for a given hardware platform or board that helps in
basic initialization at power up and helps software applications to be run on top of it.
It can be specific to some operating systems with bootloader and device drivers.

Standalone OS

Standalone applications do not utilize an Operating System (OS). They are
sometimes also referred to as bare-metal applications. Standalone applications have
access to basic processor features such as caches, interrupts, and exceptions, as well
as the basic processor features. These basic features include standard input/output,
profiling, abort, and exit. It is a single threaded semi-hosted environment.

© Copyright 2012 Xilinx
Page 30 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

e

The application you ran in this chapter was created on top of a BSP built for the
ZedBoard.

© Copyright 2012 Xilinx
Page 31 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

L XILIN

Chapter 3
Embedded System Design Using the Zynqg
Processing System and Programmable
Logic

One of the unique features of using the Zynqg™ AP SoC as an embedded design
platform is in using the available PL in addition to the Zynq PS for its ARM Cortex
A9 MPCore processing system.

In this chapter we will be creating a design with:

» PL-based AXI GPIO and AXI Timer with interrupt from the PL to PS section
e ChipScope™ IP instantiated in the PL

e Zynqg PS GPIO pin connected through the PL pins routed via the Extended MIO (EMIQ)
interface

The flow of this chapter is similar to that in Chapter 2. If you have skipped that
chapter, you might want to look at it because we will refer to it many times in this
chapter.

3.1 Adding soft IP in the PL to interface with the Zynq PS

Complex soft peripherals can be added into the PL to be tightly coupled with the

Zynq PS. This section covers a simple example with AXI GPIO, AXI Timer with
interrupt, PS section GPIO pin connected to a PL side pin via the EMIO interface,
and ChipScope instantiation for proof of concept.

In this section, you’ll create a design to check the functionality of the AXI GPIO,
AXI Timer with interrupt instantiated in PL, and PS section GPIO with the EMIO
interface. The block diagram for the system is as shown in Figure 3-1: Block Diagram.

© Copyright 2012 Xilinx
Page 32 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE

PS Section

Application Processor Unit

UART
Central
Interconnect
LED
LD9

: >| Global Interrupt Controller

CLOCK
EMIO Generation

32b GP AXI Master Port

Interface

AXI INTERCONNECT

Interrupt

AXIGPIO

AXI Timer

Chipscope
AXI Monitor

PL Section

BTNR BTNU
Figure 3-1: Block Diagram

This system covers the following connections:

e The PL-side AXI GPIO has only a 1 bit channel width and it is connected to the push-button
switch 'BTNU' on the ZedBoard.

e The PS section GPIO also has a 1 bit interface routed to PL pin via the EMIO interface and
connected to the push-button switch 'BTNR' on the board.

e Inthe PS section another 1 bit GPIO is connected to the LED 'LD9' on board which is on
the MIO port.

e An AXI timer interrupt is connected from PL to PS section interrupt controller. The timer
starts when the user presses any of the selected push buttons on board and toggles the LED
‘LD9' on board

You will write application software, which takes input from the user to select the
push button switch on the board and waits for the user to press that particular push
button. When the push button is pressed, the timer starts automatically, switches
OFF the LED and waits for the timer interrupt to happen. After the Timer Interrupt,
the LED switches ON and execution starts again, and it waits for a valid selection
from the user.

© Copyright 2012 Xilinx
Page 33 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

£ XILINX

OGRAMMABLE

You will add the ChipScope Integrated Controller (ICON) and AXI Monitor IPs to
the design so that in a later section you can learn how to debug hardware using the
AXI monitor.

The sections of Chapter 2 are valid for this design flow also. You’ll use the system
created in that chapter and pick up the procedure following 2.1.1 Take a Test
Drive! Creating a New Embedded Project With a Zynqg Processing System.

g11

the PL

In this test drive, you’ll check the functionality of the AXI GPI1O, AXI Timer with
interrupt instantiated in PL and EMIO interface.

Take a Test Drive!l Check Functionality of IP instantiated in

1. Inthe PlanAhead tool Sources pane, invoke XPS by double-clicking system_i-

system(system.xmp).
This is the embedded source you created in Bﬁ Take a Test Drive! Creating a New
Embedded Project With a Zynq Processing System.
2. Inthe XPS System Assembly View, click the Bus Interfaces tab.

3. From the IP catalog, expand General Purpose 10 and double-click AXI General Purpose
10 to add it.

A message appears asking if you want to add the axi_gpio 1.01.b IP instance to your design.
4. Click Yes.
The configuration window for GPIO opens.

5. Expand Channel 1 to view configuration parameters for channel 1.

6. Notice GPIO Data Channel Width with value 32. Change it to 1 as your design needs only
one bit of input to work. Leave all other parameters as they are.

7. Click OK.

A message window opens with the message "axi_gpio IP with version number 1.01.b is
instantiated with name axi_gpio_0". It will ask you to determine to which processor to connect.
Remember you are designing with a dual core ARM processor. The message also says XPS will
make the Bus Interface Connection, assign the address, and make 10 ports external.

The default choice of processor is "processing_system7_0". Do not change this.
8. Click OK.
There are a few connections that are not done automatically and must be done manually.

NOTE: The AXI interconnect automatically gets instantiated between the PL IPs and the PS
Section Interconnect. In this example, AXI GPIO is connected to PS through AXI interconnect.

© Copyright 2012 Xilinx
Page 34 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

£ XILIN

9. Inthe IP Catalog, expand DMA and Timer and double-click the AXI Timer/Counter IP to
add it.

A dialog box appears asking if you want to add the axi_timer_1.03.a IP instance to your design.
10. Click Yes.

The configuration window for TIMER opens. Leave all other parameters as they are.

11. Click OK.

A message window opens with the message "axi_timer IP with version number 1.03.a is
instantiated with name axi_timer_0." It will ask you to determine to which processor to connect.
Remember you are designing with a dual core ARM processor. The message also says XPS will
make the Bus Interface Connection, assign the address, and make 10 ports external.

The default choice of processor is "processing_system7_0". Do not change this.
12. Click OK.
You’ll connect the AXI timer Interrupt to the PS section interrupt manually later in this section.

13. In the IP Catalog, expand Debug and add two IPs to the design: ChipScope AXI Monitor
and ChipScope Integrated Controller. Do not make changes to the configuration of either
IP.

14. Click the Ports tab, which lists the IPs and their ports. Expand axi_interconnect_1,
axi_gpio_0, axi_timer_0, chipscope_axi_monitor_0, and chipscope_icon_0.

15. Review the following IP connections. If any of these aren’t already connected, connect

them now
IP Port Connection

axi_interconnect_1 INTERCONNECT_ACLK processing_systems7_0 : FCLK_CLKO
INTERCONNECT_ARESETN processing_systems7_0::FCLK_RESETO_N

axi_gpio_0 (BUS_IF) S_AXI::S_AXI_ACLK processing_systems7_0 : FCLK_CLKO
(10_IF) gpio_0::GPIO_IO External Port ::axi_gpio_0_GPIO_IO_pin

axi_timer_0 (BUS_IF) Processing_ps7_0 : FCLK_CLKO
S_AXI_::S_AXI_ACLK

Chipscope_axi_monitor_0 CHIPSCOPE_ICON_CONTROL Chipscope_icon_0 ::control0
(BUS_IF) MON_AXI:: Processing_ps7_0: FCLK_CLKO
MON_AXI_ACLK

Chipscope_icon_0 Control0 Chipscope_axi_monitor0::CHIPSCOPE_|

CON_CONTROL

© Copyright 2012 Xilinx
Page 35 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE

Your Ports tab should be similar to Figure 3-2: Completed Port Connections

& | Zyng I Bus Interfaces | Ports Addresses [@[[][=l
MName Connected Port Met Direction Range
: External Ports H

GxL_Interconnect 1
INTERCOMMNECT_ACLK processing_systemn7_0:FCLK_CLKD d_f; processing_systemn7_0_FCLK_CLKO [=]1
INTERCOMMECT ARESETM roCESSIn stern7 0:FCLK RESETO M # processing_system7_0_FCLK_RESETO_N [«]1
processing_system7 0
E=H ax_gpro O
= (BUS_IF) 5_AXT Connected to BUS axi_interconnect_1 [=] Connected to BUS axi_interconnect 1 [+
S_AMI ACLK processing_systemn7_0:FCLIC_CLED J{ processing_system7_0_FCLK_CLKD [=]1
=+ (I0_IF) gpioc_0 Connected to External Ports [=] Connected to External Ports [=]
GPIO 101 # No Connection [=]1
GPIO_I0_0 # No Connection [=] O
GPIO_IO_T # No Connection [=] O
GPIO IO External Ports:axi_gpie_0_GPIO_10_pin J{ axi_gpio_0_GPIO_IO (=] 10
- axt_tumer O ~
CaptureTrigd J_f; Ne Connection [=]1
CaptureTrigl # No Connection [=]1
GenerateQutd # Ne Connection [=] O
GenerateOutl J{ Mo Cennection [=] 0
PWMO # Mo Connection [=] O
Interrupt # Ne Connection [=] O
Freeze J_f; Ne Connection [=]1
=T (BUSIF) ARl TConnected to BUS am_lntmne_l_l [=] Connected to BUS axi_interconnect 1 [=]
S AXTACLE processing systemy OuFCLE CLKD # processing_systern_0_FCLK_CLKD [=]1
B} chipscope_axi_monitor 0
CHIPSCOPE_ICOMN_CONTROL chipscope_icon_0:controld J{ chipscope_icon_0_centrol0 [=1 [35:0]
RESET # Ne Connection [=]1
MOMN_AXT_TRIG_OUT J_f; Mo Cennection [=]0
(= (BUS_IF) MOM_AXT Mot connected to BUS or External Ports El Mot connected to BUS or External Ports z
PMOMN_AXT ACLK processing system7 0:FCLK CLKD # processing_system7_0_FCLK_CLKD [=]1
E}- chipscope_icon_ 0
control0 chipscope_axi_monitor_0:CHIPSCOPELICON_CONTROL d_f; chipscope_icon_0_control0 El o} [35:0]

4 mn

Figure 3-2:Completed Port Connections

16. Collapse all IPs and expand processing_system7_0. If the following port connection is not
made, do it now. It should look like Figure 3-3: Ports Tab with processing_system7_0
expanded and M_AXI_GPO_ACLK connected

IP

Port

Connection

Processing_system7_0

(BUS_IF) M_AXI_GPO::
M_AXI_GPO_ACLK

processing_system7_0 :: FCLK_CLKO

Page 36

© Copyright 2012 Xilinx

Zynq ZedBoard Concepts, Tools, and Techniques

10/16/2012

& XILINX

ALL PROGRAMMABLE

4|

I

‘;| Zyng | Bus Interfaces | Parts | Addresses l,f;:"” &= ” =l
MName Connected Port Met Direction Range -
iExternal Ports H
ax_interconnect_1
= processing_system7 0

M_AXT_GPO_ARESETM # No Connection [=] O
FCLK_CLK3 # Mo Connection [=] 0
FCLK_CLK2 # No Connection [=] O
FCLK_CLKL # No Connection =] O
processing_systern7_0:[M_AXT_GP0]:M_AXT GPO_ACLEK J{]
axi_gpio_0:[S_AXI]:S_AXT ACLK
FCLK_CLKD axi_interconnect_1:[5_AXI CTRLI:INTERCONMECT _ACLK processing_system7_0_FCLK_CLKD *| 0
axi_timer_0u:[S_AXT]:S AXT ACLK
chipscope_axi_monitor_0:[MON_AXT]:MON_AXT ACLK L
FCLK_CLKTRIG3_MN # Mo Connection [=]1
FCLK_CLKTRIG2_N # No Connection [=]1
FCLK_CLKTRIGL_MN # Mo Connection [=]1
FCLK_CLKTRIGO_MN # No Connection [=]1 A
FCLK_RESET3_M # Mo Connection =] O 3
FCLK_RESETZ M # Mo Connection =] 0
FCLK_RESET1_M # No Connection [=] O
FCLK_RESETO_MN axi_interconnect_1:INTERCOMNMECT_ARESETM ;_f; processing_systern?_0_FCLK_RESETO_M z 1]
IRQ_F2P L to H: Mo Connection L to H: No Connection 1
Corel_nFIQ Mo Connection z 1
Corel_nIRQ Mo Connection z 1
Corel_nFIG Mo Connection z I
Corel_nIRQ Mo Connection Z 1
IRQ_P2F_QSPI # No Connection [=] O
IRQ_P2F_GPIO # Mo Connection [=] O
IRQ_P2F_USBO # MNo Connection [=] O
IRQ_P2F_EMETO # No Connection [=] O
IRQ_P2F_EMET_WAKED # Mo Connection [=] O
IRQ_P2F_SDI00 # No Connection [=] O
IRQ_P2F_UART1 Jf No Connection [=] O
= (BUS_IF) M_AXI_GPO Connected to BUS axi_interconnect_1 E| Connected to BUS axi_interconnect_1 z | 4
M_AXT_GPO_ACLE processing_systern7_0:FCLE_CLKD J{ processing_system7_0_FCLEK_CLKD z I
(10_IF) MEMORY 0 Connected to External Ports IZ| Connected to External Ports Z
(I0_IF) PS_REQUIRED_EXTER... Connected to External Ports E| Connected to External Ports z
(I0_IF) TTC 0 Mot connected to External Ports E| Mot connected to External Ports z
(I0_IF) USBIND_O Mot connected to External Ports E| Mot connected to External Ports z
= (BUS_IF) 5_AXT Connected to BUS axi_interconnect 1 IZ| Connected to BUS axi_interconnect_1 Z
S_AXT_ACLK processing_systern7_0:FCLE_CLKD # processing_system7_0_FCLK_CLKD [=]1
o WO gpio 0 Tonnected to Diernal Ports [=] Connected to External Ports =]
GPIO_101 /' MNo Connection [=]1
GPIO_10_0O # No Connection [=] O
GPIO_IO_T # Mo Connection [=]0
GPIO_IO External Ports:axi_gpio_0_GPIO_IO_pin J{ axi_gpic_0_GPIO_IO z 10 i
e bl)

Figure 3-3:Processing_system7_0 Expanded and M_AXI_GPO_ACLK Connected

17. Connect the Timer interrupt on the PL side to the PS side interrupt controller by doing the

following:

a. Inthe Connected Port column on Processing_System_7_0 for IRQ_FP, click L to
H:No Connection

The Interrupt Connection dialog box opens.

b. Inthe Unconnected Interrupts list, select axi_timer_0 and click the right arrow
button to move it to the Connected Interrupts list.. The figure displays the
axi_timer_0 interrupt instance connected with Interrupt ID 91.

Page 37

© Copyright 2012 Xilinx
Zynq ZedBoard Concepts, Tools, and Techniques

10/16/2012

& XILINX

ALL PROGRAMMABLE

P hl
% Interrupt Connection Dialog . - - ﬁ
Interrupt Controller |processing_system?7_0 |E| [T show Met Mame
Unconnected Interrupt(s) Connected Interrupt(s)
Instance Mame Port Mame Instance Mame Port Mame
Y oitimer 0 interupt
]
. 113
o o
]
N
| @ 2
QK] [Cancel] [Help
Figure 3-4:Interrupt Connection Dialog Box
c. Click OK.

XPS connects the timer interrupt on the Programmable Logic side to the PS
section interrupt controller.

XPS connects the timer interrupt on the PL side to the PS section interrupt controller.

FCLK_RESET3_M # Me Connection |
FCLK_RESET2_N # Mo Connectien |
FCLK_RESET1_M # Mo Connectien |
FCLE_RESETO_M axi_interconnect_1:INTERCOMNMECT_ARESETM _;_f_ processing_systemn7_0_FCLK_RESETO_N |
IRQ_F2P L to H: axi_timer_0_Interrupt L to H: axi_timer_0_Interrupt

Figure 3-5:Timer Interrupt Connected on the PL side

18. Click the Bus Interfaces tab and expand chipscope_axi_monitor_0.

19. In the Bus Name column, click No Connection. Using the drop-down list that appears,
connect chipscope_axi_monitor to axi_gpio_0.S_AXI.

By making this connection, you can monitor any type of AXI-related transactions on the
axi_gpio_0 slave AXI bus using ChipScope Analyzer.

—_,; Zyng Bus Interfaces Ports Addresses

MName IP Version Bus Mame IP Type

igw_interconnect_ 1 i1.06.3 1L ai_interconnect
processing_systemJ 0 402.a L% processing_system?
axi_gpio 0 1.01.b 1L ad_gpio
axi_timer 0 103.a L5 axi_timer
[chipscope_axi_monitor 0 3052 1L chipscope_axi_monitor

MON_&XT axi_gpio_0.5_AXT [=]
chipscope_icon_(1.06.a 1L chipscope_icon

Figure 3-6:Connected chipscope_axi_monitor

© Copyright 2012 Xilinx
Page 38 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE

20. Route the PS section GPIO to the PL side pad using the EMIO interface by doing the
following:
a. Inthe XPS System Assembly View, click the Zynq tab.
b. Click I/0 Peripherals button to open the Zynq PS Configuration dialog box.
¢. Inthe Zynqg PS Configuration tab, expand the GPIO item.
d. Click to select the EMIO GPIO (Width) option box.
The Width of GP10O on EMIO interface setting is enabled on the next row. The
default setting is 64.
e. Change the GPIO width to 1 and click OK.

f. In the System Assembly View, click the Ports tab and expand
processing_system7_0. You can see that the GPIO port is not connected to an
external port.

v e e e e pa P

= (BUS IF) M AXI GPO Connected to BUS axi_interconnect_1 E| Connected to BUS axi_interconnect 1 [+]
M |_AXT_GPO_ACLK processing_system7_0:FCLK_CLKD processmg system/_0_FCLK_CLKD [=]1
roneos ot emees o enavors Bl comec oo e B
[UO IF) MEMORY 0 Connected to External Ports E| Connected to External Ports
[+ (10_IF) PS_REQUIRED_EXTER... Connected to External Ports [+] Connected to External Ports IZ|

Figure 3-7: GPIO Port Not Connected to External Ports

21. Expand (IO_IF)GPIO_0 and select GPIO

22. Click the drop-down arrow in the Connected Port column and select External Ports.

Making this connection allows you to assign the PL section pin location to the PS GPIO in the
user constraint file (UCF) later in this chapter.

23. Run Project > Design Rule Check. Review the messages in the Warnings tab.

Figure 3-8: Design Rule Check Warnings

24. Close XPS. The PlanAhead™ design tool window becomes active again.

25. In Design Sources, click on your embedded source and then right-click it and select Create
Top HDL. The PlanAhead tool generates the system_stub.v file.

26. In the Project Manager list of the Flow Navigator, click Add Sources.

© Copyright 2012 Xilinx
Page 39 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

£ XILIN

27. In the dialog box that opens, select Add or Create Constraints, then click Next.

28. Click Create File. In the Create Constraints File dialog box that opens, name the file
system and click OK.

29. Click Finish.

30. Expand the Constraints folder in the Sources window. Notice that the blank file system.ucf
was added inside constrs_1.Double-click system.ucf to open it in the editor.

Sources — O @ =

C’i\ E Il_g_; y Ol#ll - EI
-7 Design Sources (1]

§ e system_stub (system
E L JF] aystem _j - system (zyst
=]-{ Constraints (1]

! B constrs_1

: HY system,ucf

-1 Simulation Sources (1]

L
'

T

m

Hierarchy | IF Sources | Libraries | Compile Crder

Figure 3-9: system.ucf File Added
31. Type the following text in the UCF file:

Connect to Push Button "BTNU"
NET axi_gpio_0 _GPIO_10_pin IOSTANDARD=LVCMOS25 | LOC=T18;

Connect to Push Button "BTNR"
NET processing_system7_0_GPIO_pin IOSTANDARD=LVCMOS25 | LOC=R18;

The following settings are made:

e The LOC constraint for NET “axi_gpio_0_IO_pin” connects the AXI GPIO pin to the
T18 pin of the PL section and physically connects it to the BTNU push button on the

board.

e The LOC constraint for NET “processing_system7_0 GPIO pin” connects the PS
section GPIO to the FR18 pin of the PL section and physically connects it to the BTNR
push button on the board.

e The IOSTANDARD=LVCMOS25 constraint sets both pins to LVCMOS 2.5V 1/O
standard.

32. Save all modified files.

33. In the Program and Debug list in the Flow Navigator, click Generate Bitstream. Ignore
any critical warnings that appear.

34. After the Bitstream generation completes, export the hardware (make sure that you enable
the “Include Bitstream” option) and Launch SDK as described in Chapter 2. For this
design, since there is a bitstream generated for the PL, this will also be exported to SDK.

© Copyright 2012 Xilinx
Page 40 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

3.1.2 h Take a Test Drive! Working with SDK
SDK launches with the "Hello World" project you created with the Standalone PS in Chapter 2.

1.
2.

Select Project > Clean to clean and build the project again.

Open the helloworld.c file and modify the application software code. Refer to Appendix A,
Application Software for the application software details.

Connect and power-on the board.
Open the serial communication utility with baud rate set to 115200.

Because you have a bitstream for the PL, you must download the bitstream. To do this, select
Xilinx Tools > Program FPGA. The Program FPGA dialog box, shown below, opens. It
displays the bitstream exported from PlanAhead.

-

Pregram FPGA &Jw

Program FPGA

Specify the bitstream and the ELF files that reside in BRAM memory

Hardware Cenfiguration
Hardware Specification: Chzedboard-143'\project_1\project_1.sdk\SDENSDE_Exporthsystem_hw_platformisystem.xml

Bitstrearm: k:\zed board-143\project_1'project_1.sdk\SDKNSDE_Export\systern_hw_platformisystem.bit | | Browse.,

BMM File: Browse..
Software Configuration

Proceszor ELF File to Initialize in Block RaAM

™

'\‘?J' Program] [Cancel

Figure 3-10:Program FPGA Dialog Box

Click Program to download the bitstream and program the PL. The Blue DONE LED (LD12)
will light up.

Run the application similar to the steps in Take a Test Drive! Running the “Hello World”
Application.

In the system, the AXI GPIO pin is connected to push button BTNU on the board, and the PS
section GPIO pin is connected to push button BTNR on the board via an EMIO interface.

Follow the instructions printed on the serial terminal to run the application.

© Copyright 2012 Xilinx

Page 41 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

£ XILIN

Chapter 4 Debugging with SDK and
ChipScope Pro

This chapter describes two types of debug possibilities with the design flow you’ve
already been working with. The first option is debugging with software using SDK.
The second option is hardware debug supported by the ChipScope™ software.

4.1 m Take a Test Drive! Debugging with Software, Using
SDK

First you will try debugging with software using SDK.

1. Inthe C/C++ Perspective, right-click on the Hello_world Project and select Debug As > Debug
Configurations. Check that settings are correct for your debug operation.

2. Click Debug.
3. Adialog box appears with a question about the reset properties of your system.
4. Click OK.

Another dialog box appears to notify you that this kind of launch is configured to open the
Debug perspective when it suspends.

© Copyright 2012 Xilinx
Page 42 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

£ XILIN

OGRAMMABLE

5. Click Yes. The Debug Perspective opens.

-

Debug - Hello_world/src/helloworld.c - Xilinx SDK

File Edit Scurce Refactor Mavigate Search Run Project Xilinx Tools Window
5 = @ @ B0 2E & -0~ ™
% Debug 2 0= |§}.“§’} |]'.'=5":=_‘»5?sz

z Helle_world Debug [Xiling C/C++ ELF]
4 z Helle_world Debug [Xiling C/C++ ELF]
4 AMPD Target Debug Agent (10/8/12 2:45 PM) (Suspended)
4 o® Thread [1] (Suspended: Breakpoint hit.)
= 1 main{) helloworld.c:30 00010038
g arm-xiling-eabi-gdb (10/8/12 2:45 PM)
gl Chzedboard-143\project_1\project_1.sdk\SDK\SDK_Export\Hello_werld\DebugHe

Figure 4-1: Debug Perspective Suspended

The address shown on this page might be slightly different from the addresses shown on your
system.

The processor is currently sitting at the beginning of main() with program execution suspended
at line 0x001003c8. You can confirm this information with the Disassembly view, which shows
the assembly-level program execution also suspended at 0x001003c8.

Note: If the disassembly view is not visible, select Window > Show view > Disassembly.

The helloworld.c window also shows execution suspended at the first executable line of C code.
Select the Registers view to confirm that the program counter, pc register, contains
0x00100608.

Note: If the Registers window is not visible, select Window > Show View > Registers.

6. Double-click in the margin of the helloworld.c window next to the line of code that reads
init_platform (). This sets a breakpoint at init_platform (). To confirm the breakpoint,
review the Breakpoints window.

If the Breakpoints window is not visible, select Window > Show View > Breakpoints.
7. Select Run > Resume to resume running the program to the breakpoint.

Program execution stops at the line of code that includes init_platform (). The Disassembly and
Debug windows both show program execution stopped at 0x001014c0.

8. Select Run > Step Into to step into the init_platform () routine.

Program execution suspends at location 0x00101810. The call stack is now two levels deep.
© Copyright 2012 Xilinx
Page 43 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

£ XILINX

9. Select Run > Resume again to run the program to conclusion.

When the program completes running, the Debug window shows that the program is suspended in a
routine called exit. This happens when you are running under control of the debugger.

10. Re-run your code several times. Experiment with single-stepping, examining memory,
changing breakpoints, modifying code, and adding print statements. Try adding and moving
views.

11. Close SDK.

4.2 h Take a Test Drive! Debugging Hardware Using
ChipScope Software

Next you will try debugging hardware using the ChipScope software using the same
application you created in 3.1.2 Take a Test Drive! Working with SDK.
Re-download the bitstream and application the the ZedBoard .

Run the application and close SDK.

Open ChipScope Pro™ Analyzer.

0w N oe

Make sure that the on-board JTAG hardware is connected to the USB port of your computer
using the USB cable provided.

5. Click the Open/Search JTAG Cable button = .

6. Click OK.

7. Import a *.cdc file in ChipScope and do the following:
a. Select Dev 1 Mydevicel(XC72020).
b. Select File > Import.

c. Click Select New File and select the chipscope_axi_monitor_0.cdc file from
<project_path>\<project_name>.srcs\sources_1\edk\system\implementation\chipscope_axi_
monitor_0_wrapper.

d. Click OK.
8. Setatrigger at the “ARVALID” signal by doing the following.
a. Expand the Trigger Setup window.

b. Double-click M1:MON_AXI_ARADDRCONTROL. For the
M1:MON_AXI_ARADDRCONTROL unit, change the value of
axi_gpio_0.S_AXI/MON_AXI_ARVALID from the default of X to 1. With this setting, any
positive transaction on this signal triggers the waveform.

© Copyright 2012 Xilinx
Page 44 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE.

{28 Trigger Setup - DEV:1 MyDevice1 (XC7Z020) UNIT:0 MylLAQ (ILA) ©
pe Match Unit Function Value Radix Counter
(Lo I MOMION AX ARADDR = SOCEK 0000 X0 OO IO KK 000K XX Bin disabled =
- £ M1:MON_AXI_ARADDRCONTROL = 1000 Bin disabled
axi_gpio_0.5_AXIMON_AX_ARVALID 1
[axi_gpio_0.5_AXIMON_AXI_ARREADY X
[axi_gpio_0.5_AXIMON_AXI_ARPROT[2] X
[axi_gpio_0.5_AXIMON_AXI_ARPROT[1] X
[axi_gpio_0.5_AXIMON_AXI_ARPROT[0] X
= £ M2:MON_AXI_AWADDR = 000X 000400000 00000 _I000_I00K Bin disabled
= £ M3:MON_AXI_AWADDRCONTROL = X0 Bin disabled
o= [M4:MON_AXI_BRESP == 2000 Bin disabled
o [M5:MON_AXI_GLOBAL == X Bin disabled
- [ME:MON_AXI_RDATA = 000X _I0004_I000(_I000_I000(_I00M_I000_00K Bin disabled
o [M7:MON_AXI_RDATACONTROL == 2000¢ Bin disabled
o~ [MB:MON_AXI_WDATA = Y000_I000¢_I000(_I000(_I000(000 _I000¢ 000 Bin disabled
- [M9:MON_AXI_WDATACONTROL = Y0K_000C Bin disabled
Z|[Ada || Active I Trigger Condition Name [Trigger Condition Equation Output Enable [
&l el] TriggerCondition0 Mo Disabled =
:‘}’ Type Windows 1 Depth |1[]24 ‘V| Position: 0
5 Storage Qualification All Data
Figure 4-2: Trigger Setup Window, MON_AXI_ARVALID Setting
c. Inthe Trig section of the Trigger Setup window, click MO in the Trigger Condition
Equation column.
The Trigger Condition dialog box opens.
d. Inthe Enable column, unselect MO and select M1.

Page

© Copyright 2012 Xilinx
45 Zynq ZedBoard Concepts, Tools, and Techniques

10/16/2012

& XILINX

ALL PROGRAMMABLE.

The trigger channel changes from MO to M1; the ARVALID signal is on the M1 channel.

Trigger Condition: TriggerCondition0 u

l/EhmIean rSequencer |

@ AMD Equation) OR Equation [] Megate Whole Equation

Match Unit Enable

M0 []
| [k
M2
M3
h4
M5
&
W7
g
M3

te

=
]
=]
o

N Y
(N

<]

Trigger Condition Equation

M1

| DK Cancel N

Figure 4-3: Trigger Condition Dialog Box
Click OK.
9. In the Capture section of the Trigger Setup window, change the Position setting from 0 to 512.

The Trigger Point moves to the middle of the waveform as the sample depth changes to 1024.

10. Click the Run button
ChipScope Analyzer waits for the trigger event.

11. Follow the instructions on the serial terminal to select the AXI GPIO use case. This triggers the
waveform.

© Copyright 2012 Xilinx
Page 46 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& X

LINX

ALL PROGRAMMABLE

@ ‘Waveform - DEV:1 MyDevice1 (XC7Z020) UNIT:0 MylLAO (ILA) 3

BusiSignal X o 512 -4?2 -3|52 -2|72 -1?2 -1|12 -fiIZ als 12‘3 2?8 3?9 473
axi_gpio_0.5_RXI/MON_AXI_ARREADY of o (IR RN ARARRN NN -
axi_gpio_0.5_RXI/MON_BXI_ARVALID of o I 0
axi_gpio_0.5_BXI/MON_AXI_AWREADY ao o
axi_gpio_0.5_BXI/MON_AXI_AWVALID]
axi_gpic_0.5_BXI/MON_AXI_BREADY ao o
axi_gpic_0.5_BXI/MON_AXI_BVALID]
axi_gpio_0.5_AXI/MON_AXI RRESETN il 1
axi_gpio_0.5_AKI/MON_AKI RREADY o ¢ L)=
axi_gpio_0.5_AXI/MON_AXI RVALID of o RN RN NN NN
axi_gpio_0.5 RXT/MON AXT WREADY 1] 1]
axi_gpio_0.5_BXI/MON_BXI WVALID o o

o axl_g}!lD_ﬂ.S_AXI/}ﬂN_AXI_ARADDR 4280114280 42800000

© axi_gpio_0.5_AXI/MON_AXT_ARPROT il 1 3

o axl_gpiD_ﬂ.S_AXI/}ﬂN_AXI_mDDR 42801142801 42800000 |
o axi_gpio_0.5_ANT/MON_AXT_AWPROT il 1 y

¢ axi gpio 0.5 AXI/MON AXI BRESP of o }

O axi gpio 0.5 AXI/MON AXI RDATA 0000100001 aaoopooa) ~|
[l Dr el T« T4l]

Waveform captured Oct 8, 2012 11:45:41 Al x| s4]t] o s12[«[b] am-o: 0

Page 47

Figure 4-4:Waveform captured in Chipscope

© Copyright 2012 Xilinx

Zynq ZedBoard Concepts, Tools, and Techniques

10/16/2012

L XILIN

Chapter 5 Booting Linux and Application
Debugging Using SDK

This chapter describes the steps to boot the Linux OS on the Zyng™-7000 AP SoC
ZedBoard. It covers programming of the following non-volatile memory with the Linux
precompiled images, which are used for automatic Linux booting after switching on the
board:

e On-board QSPI Flash

e SD card
This chapter also describes using the SDK remote debugging feature to debug Linux
applications running on the ZedBoard. The SDK tool software runs on the Windows host

machine. For application debugging, SDK establishes an Ethernet connection to the
target board that is already running the Linux OS.

5.1 Requirements

The target hardware platform is the ZedBoard. The host platform is a Windows
machine running the ISE Design Suite Tools (or ISE WebPACK).

Note: The U-Boot universal bootloader is required for the tutorials in this chapter. This is included
in the precompiled images supplied with this document.

The zipfile includes these files (in addition to others used in other sections):

e BOOT.bin: Binary image containing the FSBL and U-Boot images produced by
bootgen.

e Dbootimage.bif: The file to control bootgen during the creation of BOOT.BIN.

e devicetree.dtb: Device tree binary large object (blob) used by Linux, loaded into
memory by U-Boot.

e ramdisk8M.image.gz: Ramdisk image used by Linux, loaded into memory by U-
Boot.

e README.txt: Description of the release.
e Uu-boot.elf: U-Boot file used to create the BOOT.BIN image.
e zlmage: Linux kernel image, loaded into memory by U-Boot

e zynqg_fsbl_0.elf: FSBL image used to create BOOT.BIN image

© Copyright 2012 Xilinx
Page 48 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

L XILIN

e hello_world_linux.c: sample “hello world’ ¢ file used

e stub.tcl: script file specific to the ZedBoard rev C.

5.2 Booting Linux on a ZedBoard

This section covers the flow for booting Linux on the target board using the
precompiled images provided.

5.2.1 Boot Methods
The following boot methods are available:

e Master Boot Method
e Slave Boot Method
Master Boot Method

In the master boot method, different kinds of non-volatile memories like QSPI, NAND,
NOR flash, and SD cards are used to store boot images. In this method, the CPU loads
and executes the external boot images from non-volatile memory into the Processor
System (PS). The master boot method is further divided into Secure and Non Secure
modes. Refer to the Zyng-7000 All Programmable SoC Technical Reference Manual
(UG585) for more detail.

The boot process is initiated by one of the ARM Cortex-A9 CPUs in the PS and it
executes on-chip ROM code. The on-chip ROM code is responsible for loading the first
stage boot loader (FSBL). The FSBL does the following:

e Configures the FPGA with the hardware bitstream (if it exists)

e Configures the MIO interface

e Initializes the DDR controller

e Initializes the clock PLL

e Loads and executes the Linux U-Boot image from non-volatile memory to DDR
The U-Boot loads and starts the execution of the Kernel image, the root file system, and
the device tree from non-volatile RAM to DDR. It finishes booting Linux on the target

platform.

Slave Boot Method

© Copyright 2012 Xilinx
Page 49 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

JTAG can only be used in slave boot mode. An external host computer acts as the master
to load the boot image into the OCM using a JTAG connection.

The PS CPU remains in idle mode while the boot image loads. The slave boot method is
always a non-secure mode of booting.

In JTAG boot mode, the CPU enters the halt mode immediately after it disables access to
all security related items and enables the JTAG port. You must download the boot images
into the DDR memory before restarting the CPU for execution.

5.2.2 Booting Linux from JTAG
The flowchart illustrates the process used to boot Linux on the ZedBoard.

Bood FOM

¥

Lcusial]) Sl ceCLi B
First Stages Boot | cades
F=aL)

¥

Licuac] il i T

¥

Lowd amd Ewsscute LI-Soob

L

Looead Linx Kiamed

¥

Lomd Deniics T s

L

Load Foot Fle Sysbem

i

Fam Al

Figure 5-1: Linux Boot Process on the ZedBoard
5.2.3 h Take a Test Drive! Booting Linux in JTAG Mode
1. Check the board connections and settings:

© Copyright 2012 Xilinx
Page 50 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE

a. Ensure that the jumpers JP7-JP11 are set as shown in Figure 5-2:Jumper
Settings to boot in JTAG mode:

Figure 5-2:Jumper Settings to boot in JTAG mode

b. Connect an Ethernet cable from the Zynq board to your Windows host
machine.

c. Connect the power cable to the board.

d. Connect the USB programming mini cable between the Windows Host
machine and Prog USB port on the Target board.

e. Connect a USB mini cable to the USB UART connector on the ZedBoard
with the Windows Host machine. This is used for USB to serial transfer.

2. Power on the ZedBoard.

3. Launch SDK and open the same workspace that you used in Chapter 2
and Chapter 3.

4. If the serial terminal is not open, connect the serial communication utility with the
baud rate set to 115200.

5. Open the XMD tool by selecting Xilinx Tools > XMD console
6. Atthe XMD prompt, do following:
a. Type connect arm hw to connect with the PS section CPU.

b. Type source <path to project>/project_1.sdk/SDK/SDK_Export/hw/
ps7_init.tcl and then ps7_init to initialize the PS section (such as Clock
PLL, MIO, and DDR initialization).

© Copyright 2012 Xilinx
Page 51 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

L XILIN

IMPORTANT! If you are using a rev C Zedboard, follow steps c and d.
Otherwise, skip to step e.

c. Type source <directory>/stub.tcl
Note: stub.tcl is available in the zip file that you downloaded.
d. Type target 64 to provide execution control to CPU1.
e. Type dow <directory>/u-boot.elf to download Linux U-Boot.
f. Type con to start execution of U-Boot.
On the serial terminal, the autoboot countdown message appears:
Hit any key to stop autoboot: 3
g. Press Enter.

Automatic booting from U-Boot stops and a command prompt appears on the serial
terminal.

h. At the XMD Prompt, type stop.
The U-Boot execution is stopped.

i. Type dow -data directory/zlmage.bin 0x8000 to download the Linux
Kernel image (zImage) at location 0x8000.

J. Type dow -data directory/ramdisk8M.image.gz 0x800000 to download
the Linux root file system image at location 0x800000.

k. Type dow -data directory/devicetree.dtb 0x1000000 to download the
Linux device tree at location 0x1000000.

I. Type con to start executing U-Boot.
7. At the command prompt of the serial terminal, type go 0x8000.

The Linux OS boots. After booting completes, the Zyng> prompt appears on the
serial terminal

8. At the Zyng> prompt, do the following:

a. Set the IP address of the board by typing the following command at the
Zynqg> prompt: ifconfig eth0 192.168.1.10 netmask 255.255.255.0

© Copyright 2012 Xilinx
Page 52 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

L XILIN

This command sets the board IP address to 192.168.1.10.

b. Check the connection with the board by typing ping 192.168.1.10. The
following ping response displays in a continuous loop:

64 bytes from 192.168.1.10: seq=0 ttl=64 time=0.185 ms

This response means that the connection between the Windows host machine
and the target board is established.

c. Press Ctrl+C to stop displaying the ping response.

Linux booting completes on the target board and the connection between the
host machine and the target board is done.

5.2.4 Booting Linux from QSPI Flash

5.2.5 m

This Test Drive covers the following steps:

Take a Test Drive! Booting Linux from QSPI Flash

1. Create the First Stage Boot Loader Executable File

2. Make a Linux Bootable Image for QSPI Flash

3. Program QSPI Flash with the Boot Image using JTAG
4. Booting Linux from QSPI Flash

1. Step 1: Create the First Stage Boot Loader Executable File

Note: You can skip this step by using the zynq_fsbl_0.elf provided.
1. In SDK, select File > New > Application Project.

The New Project wizard opens; for Project Name, type in zyng_fsbl 0 and
click Next..

2. Select Zynq FSBL in the Template list and keep the remaining default options.
The Location of your project, the hardware platform used, and the processor are
visible in this window. The processor is ps7_cortexa9 0.

3. Click Finish to generate the FSBL.

The Zyng FSBL compiles and .elf file is generated.

2. Step 2: Make a Linux Bootable Image for QSPI Flash

1. In SDK, select Xilinx Tools > Create Boot Image.

© Copyright 2012 Xilinx
Page 53 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

L XILIN

The “‘Create Zynqg Boot Image’ wizard opens.

2. Provide the path to zynqg_fsbl_0.elf in the FSBL ELF tab.
3. Add the U-Boot image.

4. Add the Linux Kernel image, such as zlmage.bin, and provide the offset
0x100000.

IMPORTANT: There is a Known Issue with the Bootgen command: it does not accept a file
without a file extension. To work around this issue, change the zImage downloaded file
to zImage.bin.

5. Add the device tree image (devicetree.dtb) and provide offset - 0x3c0000.

6. Add the root file system image (ramdisk8M.image.gz) and provide offset
0x400000.

The provided offsets are predefined in the U-Boot. U-Boot expects those addresses
when booting from QSPI, therefore you must not change the offset without
modifying and re-building the U-Boot image.

7. Provide the absolute path to the output folder name in the Output older tab.
In this example, we have used “qspi-boot” as the folder to store the output
files.

© Copyright 2012 Xilinx
Page 54 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE

Create Zynq Boot Image

Creates Zynq Boot Image in .bin and .mcs formats frem given FSBL elf and partition files in specified cutput folder.

Basic | Advanced

Bif file ’Createa new bif file...

FSBL elf C\zedboard-143\files\zyng,_fsbl_0.elf

List of partitions in the boot image.

File Offset Alignment Allocation Add
Chzedboard-143\files\zynog_fsbl_0.elf
== Remove
Chzedboard-143\files\u-boot.elf
Ci\zedboard-143\files\zlmage.bin 0x100000
Chzedboard-143Vfiles\devicetree.dth (30000
D

Chzedboard-143\files\ramdiskBM.image.gz (400000
Output folder C\zedboard-143\gspi-boot)| Browse

@ [Create Image] [Cancel I

Figure 5-3:Creating a Zynq QSPI Boot Image
8. Click Create Image.

The Create Zynq Boot Image window creates following files in the specified
output folder:

bootimage.bif
u-boot.bin
u-boot.mcs

3. Step 3: Program QSPI Flash with Boot Image using JTAG & UBoot

1. Power on the ZedBoard.

2. Set the Jumpers JP7-11 to the JTAG bood mode:
M106: 0

MI105: 0

M104: 0

M103: 0

M102: 0

© Copyright 2012 Xilinx
Page 55 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

v
& XILIN
3. If a serial terminal is not open, connect the serial terminal with the baud rate set to 115200.
4. Select Xilinx Tools > XMD Console to open the XMD tool.
5. From the XMD prompt, do the following:
a. Type connect arm hw to connect with the PS section CPU,

b. type source ps7_init.tcl and then ps7_init to initialize the PS section (such as
Clock PLL, MIO, and DDR initialization),

c. Type dow <directory>/u-boot.elf to download the Linux U-Boot to the QSPI
Flash.

d. Type dow -data <boot_directory>/u-boot.bin 0x08000000 to download the Linux
bootable image to the target memory at location 0x08000000.

You just downloaded the binary executable to DDR memory. You can download the binary
executable to any address in DDR memory, but make sure that you do not change the U-Boot
executable, which is loaded at 0x04000000. You run this file after loading the u-boot.bin data
file.

e. Type con to start execution of U-Boot.
On the serial terminal, the autoboot countdown message appears:
Hit any key to stop autoboot: 3
6. Press Enter.

Automatic booting from U-Boot stops and the zed-boot> command prompt appears on the
serial terminal.

7. Do the following steps to program U-Boot with the bootable image:
a. At the prompt, type sf probe 0 0 0 to select the QSPI flash.

b. Type sf erase 0 0x01000000 to erase the Flash data. (Note that this step can take
about 8 minutes to complete)

c. Type sf write 0x08000000 0 OXFFFFFF to write the boot image on the QSPI
Flash.

Note that you already copied the bootable image at DDR location 0x08000000. This command
copied the data, of the size equivalent to the bootable image size, from DDR to QSPI location
0x0.

You can change the argument to adjust the bootable image size.

© Copyright 2012 Xilinx

Page 56 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

— T— ——
M COM29:115200baud - Tera Term VT [=] B [t

Eile Edit Setup Contrel Window KanjiCode Help

Figure 5-4: Serial Terminal Window showing QSPI programming

8. Power off the board.

4. Booting Linux from QSPI Flash

1. After you program the QSPI Flash, set the jumper settings (JP7-11) on the
ZedBoard.

Jumper settings for QSPI:
MI06: 0
MI05: 1
MI04: 0
MI103: 0
MI02: 0

2. Connect the Serial terminal with a 115200 baud rate setting.
3. Switch on the board power.

A Linux booting message appears on the serial terminal. After booting finishes,
the zyng> prompt appears.

© Copyright 2012 Xilinx
Page 57 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

£ XILINX

OGRAMMABLE

i COM29:115200baud - Tera Term E

Eile Edit Setup Contrel Window KanjiCode Help

oo bd

, rootpath=

Figure 5-5:Serial Terminal Window showing Linux Booting

5.2.6 Booting Linux from the SD Card

5.2.7 m

Ensure that the jumper settings (JP7-11) are set to boot from SD card as shown in the
figure.

Take a Test Drive! Booting Linux from the SD Card

Figure 5-6:Jumper Settings to boot from SD Card
© Copyright 2012 Xilinx
Page 58 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

L XILIN

1. Create an FSBL for your design as described in “Step 1: Create the First Stage
Boot Loader Executable File” . Alternatively, you can use the zync_fsbl_0.elf file
that you downloaded previously.

2. In SDK, select Xilinx Tools > Create Boot Image to open the “Create Zynq
Boot Image” wizard. Alternatively, you can use the BOOT.bin file that you
downloaded previously, and skip to step 7.

3. Add zyng_fsbl_0.elf and u-boot.elf
4. Provide the output file name as BOOT.bin in the Output file field.
5. Click Create Image. SDK generates the BOOT.bin file.

6. Copy BOOT.bin, zImage, devicetree.dtb and ramdisk8M.image.gz to the SD
card.

7. Turn on the power to the board and check the messages on the Serial
terminal. The zyng> prompt appears after Linux booting is complete on the
target board.

5.3 Hello World Example

This example shows you how to create a simple Linux application that prints “Hello
World” on a serial terminal window.

5.3.1 h Take a Test Drive! Running a “Hello World” Application

1. Setup your ZedBoard connections
a. Connect the power cable to the ZedBoard.

b. Connect a USB micro cable to the USB UART connector on the ZedBoard
with the Windows Host machine. This is used for USB to serial transfer.

c. Make sure the SD card with the Linux image is inserted into the ZedBoard.

© Copyright 2012 Xilinx
Page 59 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

&

XILINX

ALL

2.

PROGRAMMABLE

Launch SDK, and navigate to the same project directory that you used earlier in

this chapter to create an FSBL. In this section, the directory used for illustration is:
C:\zedboard-143\project_1\project_1.sdk\SDK\SDK _Export.

Edit Source Refactor Navigate Search Run Project

In SDK, select File > New > Application Project

Xilinx Tools Window Help
New Alt+Shift+N » | &) Application Project - Q- @B ES %5 Debug [Eg C/Cer
OpenFile... Wl Board Support Package
9 Project. = =
Close Cirew | F T fstemmss (3l systemumss £ 2 = 0|3 out 2 @ Ma g
Close All Ctrl+Shift+W | &9 Source Folder + ||&n outline is not available.
Save cutes | 5| Folder
f e e [€ SourceFile
ve As.. 3
Save All CirisShiftes | (U HeaderFile
_— [% Filefrom Template
@ Class
Mowe... target.
R 2 f‘j Other... Cirl+N 5\ SDK\SDK_Export\system_hw_platform\system.xm
o pel_cortexad 0
Refresh F5
Convert Line Delimiters To »
Print... Ctilsp pge0s.
andalone
Switch Workspace s
Restart andalone is a simple, low-level software layer. It provides access to basic processor features such
caches, interrupts and exceptions as well as the basic features of a hosted environment, such as
29 Import. andard input and output, profiling, abort and exit. =
% Export... andalene v2 07 a
Properties Alt-Enter
1 system.mss [zyng_fsbl0_bsp] e Board Support Package.
2 system.mss [test_bsp] 10 gpic Documentation Examples
3 asm_vectors.5 [Hello_world_bsp/.../src] L0 tmrctr Documentation Examples
4 helloworld.c [Hello_world/src] L0 generic
L0 generic
Exit L0 devefg Documentation Examples
ps/_dma ns dmaps Documentation Examples
ps7_dma s dmaps Documentation Examples
ps7_ethernet 0 emacps Documentation Examples
ps7_gpio_0 gpiops Documentation Examples
ps7_iop_bus_config 0 generic
ps7_qspi 0 qspips Documentation Examples L4
ps7_qspi_linear 0 generic
ps7_ram_0 generic
psT_ram_1 generic
ps7_scugic 0 scugic Documentation Examples
ps7_scutimer 0 scutimer Documentation Examples
psT_scuwdt 0 generic
ps7_sd 0 generic
ps7_sler 0 generic -
< i »
Overview| Source
[2 Problems |] Tasks | Bl Console [] Properties | & Terminal 1 | %5 Debug | [3] XMD Console £3 BRE~—O
XMD Process
Accepted 2 new ICLSock connection from 127.0.0.1 on port 57072 -
pwd
C:/Xilinx/14.3/ISE_DS/EDK 5
XMD% |L|
‘ i
XMDE
e

Pag

No ok

Click Next.

e 60

Figure 5-7: New Project Selection

Enter hello_world_ap in the Project name field
Select Linux as the OS Platform in the Target Software and select Finish.
Select C as the Language.

© Copyright 2012 Xilinx

Zynq ZedBoard Concepts, Tools, and Techniques

10/16/2012

& XILINX

ALL PROGRAMMABLE.

-
Mew Project

Application Project

Create a managed make application project.

Project name: hello_world_ap

Uze default location

Location: | Chzedboard-143\project_1\project_1.sd\SDINSDE_Exporthihi

Choose file systern: | default

Target Hardware

Browse...

Hardware Platform [systern_hw_platform

Processor [psi_cortexad 0

Target Software

05 Platform ’Linux

Language i@ C C++

Board Support Package (@) Create Mew

Use existing

@

< Back ’

/|

Finish

J

Mext =

Cancel

Figure 5-8: Application Project

8. Select Linux Empty Application and click Finish

© Copyright 2012 Xilinx

Page 61 Zynq ZedBoard Concepts, Tools, and Techniques

10/16/2012

& XILINX

ALL PROGRAMMABLE

Mew Project l (=] é

Templates p
Create one of the available templates to generate a fully-functioning @
application project.

Available Templates:
Linux Empty Application A blank Linux C project. -

Linux Hello World

@j Mext » Einish l ’ Cancel

Figure 5-9:Add An Empty Application

9. Add a Software Application. At this point, you will create a software platform and
an empty software project for the hardware. You will then import the
hello_world_linux.c into the project, and SDK will automatically build and
produce an elf (Executable and Load Format) file.

10. Right Click hello_world_ap and select Import

11. In the Import dialog box, select General -> File System and select Next

© Copyright 2012 Xilinx
Page 62 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE.

CR e =

Select
E\A f
Import resources from the local file system inte an existing project.

Select an import source:

| type filter text |

a [= General
@ Archive File
1 Existing Projects into Workspace
|, File System |
= Preferences
b= G+
[= Remote Systemns
[= Run/Debug
[= Team

@ < Back Mext > Eiat

Figure 5-10:Import .c file

12. Browse to the directory in which you saved the files that you downloaded. Select
hello_world_linux.c and select Finish . In this example, the directory is
C:\zedboard-143\files

© Copyright 2012 Xilinx
Page 63 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE

Import -

=)

File system

Import rescurces from the local file system.

From directory: Chzedboard-143\files

&

-

- Browse..

@ = files || [] Elidevicetreedtb
] hella_world_linux.c
] [£ hellowerld.c

[=l gspi-boot.bin

[El gspi-boot.mes

[B rarmdiskBM.image.gz
[|Z] stub.tel

m u—I::n:u:ut.eIf

[T = dmage.bin

i
s

Filter Types... || SelectAll || DeselectAll |

Into folder hello_world_ap

Options
[7] Overwrite existing resources without warning
[T] Create complete folder structure

i
Browse...

@

Finizh

|| Cancel

Figure 5-11: Select hello_world_linux.c

Check that the application is built without errors. Check the message log in the Console

window. You will see text similar to:

Invoking: ARM Linux Print Size

arm-xilinx-linux-gnueabi-size hello_world_ap.elf |tee
"hello_world_ap.elf.size"
text data bss dec hex
1440 292 4 1736 6c8

hello_world_ap.elf
Finished building: hello_world _ap.-elf._size

© Copyright 2012 Xilinx

Page 64 Zyng ZedBoard Concepts, Tools, and Techniques

filename

10/16/2012

& XILINX

1. Inyour project directory, you will see that the compiled file, hello_world_ap.elf
has been created. In this example, hello_world_ap.elf is located in the directory:

C:\zedboard-143\project_1\project_1.sdk\SDK\SDK _Export\hello_world_ap\Debug
2. Copy hello_world_ap.elf to the SD card containing the Linux boot files.

3. Insert the SD card back into the ZedBoard.

4. Ensure that the Jumpers JP7-11 are set in SD card boot mode.

5. Power on the ZedBoard, and open a serial terminal window.

6. Boot Linux on the ZedBoard from the SD card with the pre-built image.

7. You will know that Linux has been successfully booted when you see the zyng>
prompt in your serial teriminal window.

¥ COM29:115200baud - Tera Term VT S | B o

File Edit 5etup Control Window KanjiCode Help

GE s de ph

Figure 5-12:Serial Teriminal Window showing Linux Booting

8. In the serial terminal window, at the zyng> prompt type:
zyng> mount /dev/mmcblkOpl /mnt
zyng> /mnt/hello_world_ap.elf

This executes the hello_world_ap program and you see the display on the terminal

© Copyright 2012 Xilinx
Page 65 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

: i | EERTSCT)
41 COM29:115200baud - Tera Term VT [B
————

Eile Edit Setup Control ndow KanjiCode Help

{1 m r 1:

Figure 5-13: Serial Terminal Window showing hello_world_linux running

5.4 Controlling LEDs and Switches in Linux Example

This example shows you how to create a simple Linux application that controls the status
of the LEDs and prints the value of the switch settings, then prints “Hello World” on a
serial terminal window. In this example, the default ZedBoard settings in PlanAhead as
well as XPS are used; a bitstream is generated in PlanAhead and then the entire design is
exported to SDK.

54.1 ﬂ Take a Test Drive! Controlling LEDs and Switches in a
Linux Application

For this test drive, just as you did in Chapter 2, you start the ISE® PlanAhead ™
design and analysis tool and create a project with an embedded processor system as
the top level.

Start the PlanAhead tool.
3. Select Create New Project to open the New Project wizard.

4. Use the information in the table below to make your selections in the wizard screens

© Copyright 2012 Xilinx
Page 66 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILIN

ALL PROGRAMMARBLE
Wizard Screen System Property Setting or Command to Use
Project Name Project name Specify the project name.
Project location Specify the directory in which to store
the project files.
Create Project Subdirectory Leave this checked.
Project Type Specify the type of sources for Use the default selection, RTL Project.
your design. You can start with
RTL or a synthesized EDIF
Add Sources Do not make any changes on this screen.
Add Existing IP Do not make any changes on this screen.
Add Constraints Do not make any changes on this screen.
Default Part Specify Select Boards.
Board Select ZedBoard Zynq Evaluation and
Development Kit
New Project Summary | Project summary Review the project summary before
clicking Finish to create the project.

© Copyright 2012 Xilinx
Page 67 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE.

E Mew Project 23
Default Part
Choose & default Xilinx part or board for your praject. This can be changed later. gﬁ
Specify Filter
& Parts Family | Al -
pacoge A -
Speed grade | All -

Reset All Filters

Search: | O
I/O Pin Available Lum) Block

T Part Cfc?unt I0Bs Elements FipFops RAMs

B virtex-5 FXT ML510 Evaluation Platform @ xcSvfx130tfF1738-2 1,733 2340 81920 81920 298 -
ﬂ Virtex-6 ML&0S Evaluation Platform @ wcEvhe240tF1156-1 1,156 00 150720 301440 416

[Spartan-3& DSP 18004 Starter Board @ xc3sd1800afos76-4 675 519 33280 33280 34

@ Spartan-34 DSP 34004 Development Board S xc3sd3400afgs76-4 675 459 47744 47744 126

@ Spartan-3E 1600F MicroBlaze Dev Board @ xc3s1600efg320-4 320 250 29504 29504 36

@ spartan-6 SPE01 Evaluation Platform @ wchslx16cs0324-2 324 232 9112 18224 32 b
@ Spartan-6 5P&05 Evaluation Platform @ wchsln45tfign484-3 484 296 27238 54576 116

[Spartan-34 Starter Kit @ xc3sTO0afgdsd-4 484 372 11776 11776]

[Spartan-3&N Starter Kit @ xc3sT00anfogda4-4 484 372 11776 11776 0 1
@ spartan-3E Starter Board @ xc3s500=fg320-4 320 232 9312 9312 20 1
@ virtex-7 VC707 Evaluation Platform @ xcTvx485tifg1751-2 1,751 700 303600 607200 1030

B 7¥NQ-7 ZC702 Evaluation Board @ wc7z020cg484-1 434

B 2YNQ-7 2C706 Evaluation Board @ xc7z045ffg900-1 900 A
R I I R I N -
1 10 | v O

Figure 5-14: New Project Wizard Part Selection

When you click Finish, the New Project wizard closes and the project you just
created opens in the PlanAhead design tool.

© Copyright 2012 Xilinx
Page 68 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE.

1 - [G »
File Edit Flow Tools Window Layout View Help Q- Search com
L LR Y el N Ready
Flow Navigator X« | Project Manager - project_1 X |
o= Sources — O % | [ZProjectSummary X | [mIES
axswe BE = -t setts _
|AP iect ! ‘ e . Z ﬁPm]ectSettmgs Edit (& [Messages ES
43 Design Sources
ﬁ Project Settings - 0 Cansgh'aints 1 b Project name: project_1 Summary: 0 errars
(ﬁ Add Sources = Simulation Sources (1) Product family: Zyng-7000 0 critical warnings
g TP Catalog Project part: HCTz020dg484-1 0 warnings
@ Run Behavioral Simulation Top module name: Mot Defined
o> Synthesis (Ready) ES =» Implementation (Ready) E3
4 RTL Analysis
=3 . Part: xc7z020cg484-1 Part: xc72020cdg484-1
» g Open Elaborated Design = P -
Libraries |Comp||e Order | Strategy: PlanAhead Defaults Strategy: ISE Defaults
4 Synthesis &b Sources l 7 Templates Flow: ST Flow: ISE
ﬁ Synthesis Settings Properties O =
- % Resources £
& Run Synthesis & = R =
> @ Open Synthesized Design Resource information is not available.
Implemented Timi S
4 Implementation @ - = &
% Implementation Settings Timing information is not available.
. : p
P Run Implementation Next: Run Implementation
o Iil«‘ Open Implemented Design | [—n—7n —n —n — — ——— L _—
Design Runs i [E 4
4 Program and Debug
. A, | Name Part Constraints ~ Strategy Status Progress Start Elap
5 Bitstream Setti
itstream Settings
e) E -2 synth_1 %c72020clg484-1 constrs_1 PlanAhead Defaults (XST 14) Notstarted [10%
il Generate Bitstream el e impl_1 xc72020cig484-1 constrs_1 15E Defaults (ISE 14) Notstarted ———10%
@ Launch ChipScope Analyzer ;
W Launch iMPACT M
< m =

5 Td Consale L'.'L‘- Messages Ll}l Log Lg Reports-, (% Design Runs]

Figure 5-15: PlanAhead GUI

You'll now use the Add Sources wizard to create an embedded processor project.

10. Click Add Sources in the Project Manager.

The Add Sources wizard opens.

11.
12.
13.

The module you created displays in the sources list.

14. Click Finish.

Select the Add or Create Embedded Sources option and click Next.
In the Add or Create Embedded Source window, click Create Sub-Design.

Type a name for the module and click OK. For this example, use the name system.

The PkanAhead design tool creates your embedded design source project. It recognizes that you

have an embedded processor system and starts XPS.

Continuing Your Design in XPS

Create a new embedded system in XPS using the Base System Builder (BSB) Wizard

© Copyright 2012 Xilinx
Page 69

Zynq ZedBoard Concepts, Tools, and Techniques

10/16/2012

& XILINX

ALL PROGRAMMABLE.

In the BSB Wizard, you can select and configure the processing system 1/0O interface and add
default peripherals to the fabric. Designing a New Embedded System Using the BSB Wizard

1. The dialog box opens, and asks if you want to create a Base System using the BSB Wizard.

Select Yes.

SEEETI

This project appears to be a blank zyng project. Do you want to create a Base
Systern using the B5B Wizard?

(o= J[

Figure 5-16: Platform Studio dialog box

The first window of the BSB asks you to elect whether to create an AXI-based or PLB-based
system.

| Create New XPS Project Using BSB Wi [S|
Mew Project

Project File |C:‘I,zedbnard—l43\|:lroject_1\|:mject_l.srcs‘l,sources_l‘l,edk‘l,system\,system.mp | Browse ...

Select an Interconnect Type

@ AXI System

AXI is an interface standard recently adopted by Xilinx as the standard interface used for all current and

future versions of Xilinx IP and tool flows, Details on AXI can be found in the AXI Reference Guide on
wilir. com.

PLE System

PLB is the legacy bus standard used by Xilinx that supports current FPGA families, induding Spartant and
Virtexs, PLE IP will not support newer FPGA families, so is not recommend for new designs that may

migrate to future FPGA families. Details on PLE can be found in the PLEv46 Interface Simplifications
document on xilinx. com,

Select Existing .bsb Settings File(saved from previous session)

Set Project Peripheral Repository Search Path

| Browse ...

| Browse ...

o | [o |

Figure 5-17:Create New Project BSB Wizard

© Copyright 2012 Xilinx
Page 70 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

£ X

2. Select AXI System and click OK.

3. Inthe Base System Builder wizard, create a project using the settings described in the table.
Where a setting or command has not been specified, accept the default values.

Wizard Screen System Property Setting or Command to Use
Board and System Board Use the default option to create a system
Selection for ZedBoard Zynq Evaluation and

Development Kit.

Note: This is pre-populated because you
selected this board in the PlanAhead tool.

Board Configuration This information is pre-populated based
on your board selection..

Select a System Zyng Procesing System 7
Peripheral Select and Configure Peripherals | Leave the default peripheral
Configuration Configuration as-is.

© Copyright 2012 Xilinx
Page 71 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE

@ Base System Builder -- AXI flow ? 28 |

Peripheral Configuration

To add a peripheral, drag it from the "Available Peripherals” list to the Induded Peripherals list, To configure a core parameter, dick on the peripheral.

Select and Configure Peripherals

Available Peripherals

Induded Peripherals for Processing System? Select Al

Peripheral Names

Core Parameter
10 Devices . BTMs_5Bits
= Interngl Peripherals Core axi_gpio
ax?_b.ram_ctrl Add > Use Interrupt
ax?_t?mebase_wdt LEDs_8Bits
axi_timer Core: axi_gpio
SWs_BBits

Core: axi_gpio

’ < Back][Finish H Cancel

Figure 5-18: Peripheral Configuration Wizard

4. Click Finish

5. Close the XPS window. The active PlanAhead tool session updates itself with the project
settings.

5. Back in PlanAhead, under Design Sources in the Sources pane, select and right-click system
(system.xmp) and select Create Top HDL.

PlanAhead generates the system_stub.v top-level module for the design.

6. Generate a Bitstream: Under Program and Debug, select Generate Bitstream

7. Select File > Export > Export Hardware for SDK.

The Export Hardware dialog box opens.

© Copyright 2012 Xilinx
Page 72 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

£ XILINX

OGRAMMABLE

8. Check the Include Bitstream check-box By default, the Export Hardware check-box is
checked.

9. Check the Launch SDK check-box.
10. Click OK; SDK opens.

Continuing Your Design in SDK
1. Connect thel2V AC/DC converter power cable to the ZedBoard barrel jack.

2. Connect a USB micro cable between the Windows Host machine and the ZedBoard JTAG
317).

3. Connect a USB micro cable to the USB UART connector (J14) on the ZedBoard with the
Windows Host machine. This is used for USB to serial transfer.

4. Connect an Ethernet cable between the ZedBoard and the Windows Host machine.
5. Power on the board using the jumper settings to boot from SD card.

MIO6: 0

MIO05: 1

MI10O4: 1

MIO3: 0

MI102: 0
6. Open a serial communication utility for the COM port assigned on your system.

The default configuration for Zyng Processing System is: Baud rate 115200; 8 bit; Parity: none;
Stop: 1 bit; Flow control: none

7. Linux boots up, and you will see the promt Zyng> in the serial terminal window.
Next, program the FPGA with the bitstream created in PlanAhead.

8. In SDK, select Xilinx Tools -> Program FPGA.. Select the bitstream generated in PlanAhead, and
click Program.

9. When the FPGA is programmed, you will see the DONE LED LD12 light up in blue.

Add the software application.

10. In SDK, select File > New > Application Project

© Copyright 2012 Xilinx
Page 73 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

ALL PROGRAMMABLE.

Edit Source Refactor Navigate Search Run Project XilinxTools Window Help
New Alt+Shift+N » | &) Application Project B R R R R I
OpenFile... Wl Board Support Package
4 Project.. — =
Close crew | F4 Pred ftemmss [systememss 552 = O|(0wt 5 @Ma| =0
Close All Ctrl+Shift+W | &9 Source Folder + ||&n outline is not available.
Save cutes | 5| Folder
f e e [€ SourceFile
ve As.. 3
Save All CirisShiftes | (U HeaderFile
_— [% Filefrom Template
@ Class
Mowe... target.
Rename.. & f‘j Other.. Crl+N 5\ SDK\SDK_Export\system_hw_platform\system.xr
o pel_cortexad 0
Refresh F5
Convert Line Delimiters To »
Print... Ctilsp pge0s.
andalone
Switch Workspace s
Restart andalone is a simple, low-level software layer. It provides access to basic processor features such
caches, interrupts and exceptions as well as the basic features of a hosted environment, such as
29 Import. andard input and output, profiling, abort and exit. =
% Export... andalene v2 07 a
Properties Alt-Enter
1 system.mss [zyng_fsbl0_bsp] e Board Support Package.
2 system.mss [test_bsp] 10 gpic Documentation Examples
3 asm_vectors.5 [Hello_world_bsp/.../src] L0 tmrctr Documentation Examples
4 helloworld.c [Hello_world/src] L0 generic
L0 generic
Exit 10 devefy Documentation Examples
ps/_dma ns dmaps Documentation Examples
ps7_dma s dmaps Documentation Examples
ps7_ethernet 0 emacps Documentation Examples
ps7_gpio_0 gpiops Documentation Examples
ps7_iop_bus_config 0 generic
ps7_qspi 0 qspips Documentation Examples L4
ps7_qspi_linear 0 generic
ps7_ram_0 generic
psT_ram_1 generic
ps7_scugic 0 scugic Documentation Examples
ps7_scutimer 0 scutimer Documentation Examples
psT_scuwdt 0 generic
ps7_sd 0 generic
ps7_sler 0 generic -
< i »
Overview| Source |
3 Problems [%] Tasks | B Console | I Propeties [Teminal 1 %> Debug [[] XMD Console 3 BE -0
XMD Process
Accepted 2 new ICLSock connection from 127.0.0.1 on port 57072 -
pwd
C:/Xilinx/14.3/I5E_DS/E =
XMD% |L|
‘ B
XMDE
e

11.
12.
13.
14.
15.

Click Next.

Page 74

Figure 5-19: New Project Selection

Enter leds_switches in the Project name field
Select Linux as the OS Platform in the Target Software and select Finish.
Select C as the Language.

Select Linux Empty Application and click Finish

© Copyright 2012 Xilinx

Zynq ZedBoard Concepts, Tools, and Techniques

10/16/2012

& XILINX

ALL PROGRAMMABLE.

F B
Mew Project o |nl=]
Templates .
Create one of the available templates to generate a fully-functioning @
application project.

Available Templates:

Linux Empty Application A blank Linux C project. -
Linux Helle World

® Next > [Finish J ’ Cancel

Figure 5-20:Add An Empty Application

16. Add a Software Application. At this point, you will create a software platform and an empty software
project for the hardware. You will then import the hello_world_linux.c into the project, and SDK will
automatically build and produce an elf (Executable and Load Format) file.

17. Right Click leds_switches and select Import

18. Inthe Import dialog box, select General -> File System and select Next

© Copyright 2012 Xilinx
Page 75 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

gl ™
Import ; | e
Select Ng
Import resources from the local file system inte an existing project. g 5

Select an import source:

type filter text

a [= General 1
@‘ Archive File
1% Existing Projects into Workspace
[, File System
= Preferences

s = C/C++

» = Remote Systems

» = Run/Debug

2 = Team

3
2 < Back Next » Einish J

Figure 5-21:Import .c file

19. Browse to the directory in which you saved the files that you downloaded. Select leds_switches.c and

select Finish . In this example, the directory is C:\zedboard-143\files

Check that the application is built without errors. Check the message log in the Console window.

Debugging the Linux Application Using SDK Remote Debugging

1.

© ® N o O

Right-click leds_switches and select Debug as > Debug Configurations.
The Debug Configuration wizard opens.

In the Debug Configuration wizard, right-click Remote ARM Linux Application and click
New.

In the Connection drop-down list, click New.
The New Connection wizard opens.

Click the SSH Only tab and click Next.

In the Host Name tab, type the target board IP (192.168.1.10)
Set the connection name and description in the respective tabs.
Click Finish to create the connection.

In the Debug Configuration wizard, under Remote "Absolute File Path for C/C++ Application,”

click the Browse button B . The Select Remote C/C++ Application File wizard opens.
© Copyright 2012 Xilinx

Page 76 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

v
& XILIN
10. Do the following:
a. Expand the root directory. It opens the Enter Password wizard.

b. Provide the user ID and Password (root/root); select the Save ID and Save Password
options.

c. Click OK.
The window displays the root directory contents, because you previously established the
connection between the Windows host machine and the target board.
d. Right-click on the “/” in the path name and create a new directory; name it Apps.
e. Inthe Apps directory, create a new file titled leds_switches_0.elf.
f. Provide an application absolute path, such as /Apps/leds_switches_0.elf.
11. Click Apply.
12. Click Debug.

The Debug Perspective opens.

13. Turn off the Verbose console mode '| in the console window.

14. Step through the code or run the code, and watch the messages in the console window. AT the
same time, you will notice the values of the Variables in the window on the top left hand side,
show the status of the switches and LEDs.

15. The Console window displays the values of the LEDs and Switches, and Prints ‘Hello World’.

16. Change the switch settings, and re-run the application to see the appropriately different values
reported.

17. Exit SDK

© Copyright 2012 Xilinx
Page 77 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

L XILIN

Appendix A

Application Software

A.1 About the Application Software

The system you designed in this guide requires application software for the
execution on the board. This appendix describes the details about the application
software.

The main() function in the application software is the entry point for the execution.
This function includes initialization and the required settings for all peripherals
connected in the system. It also has a selection procedure for the execution of the
different use cases, such as AXI GPIO and PS GPIO using EMIO interface. You can
select different use cases by following the instruction on the serial terminal.

A.2 Application Software Steps

Application Software comprises the following steps:

Initialize the AXI GP1O module.

1. Set adirection control for the AXI GPIO pin as an input pin, which is connected with BTNU
push button on the board. The location is fixed via LOC constraint in the user constraint file
(UCF) during system creation.

2. Initialize the AXI TIMER module with device ID 0.

3. Associate a timer callback function with AXI timer ISR.

4. This function is called every time the timer interrupt happens. This callback switches on the
LED “‘LD9’ on the board and sets the interrupt flag.

5. The main() function uses the interrupt flag to halt execution, wait for timer interrupt to happen,
and then restarts the execution.

6. Set the reset value of the timer, which is loaded to the timer during reset and timer starts.

© Copyright 2012 Xilinx
Page 78 Zynq ZedBoard Concepts, Tools, and Techniques 10/16/2012

10.

11.

12.

Set timer options such as Interrupt mode and Auto Reload mode.
Initialize the PS section GPIO.

Set the PS section GP10O, channel 0, pin number 10 to the output pin, which is mapped to the
MIO pin and physically connected to the LED ‘LD9’ on the board.

Set PS Section GP1O channel number 2 pin number 0 to input pin, which is mapped to PL side
pin via the EMIO interface and physically connected to the BTNR push button switch.

Initialize Snoop control unit Global Interrupt controller. Also, register Timer interrupt routine
to interrupt 1D '91', register the exceptional handler, and enable the interrupt.

Execute a sequence in the loop to select between AXI GPIO or PS GPIO use case via serial
terminal.

The software accepts your selection from the serial terminal and executes the procedure
accordingly.

After the selection of the use case via the serial terminal, you must press a push button on the
board as per the instruction on terminal. This action switches off the LED ‘LD9’, starts the
timer, and tells the function to wait for the Timer interrupt to happen. After the Timer interrupt
happens, LED 'LD9" switches ON and restarts execution.

For more details about the API related to device drivers, refer to the Zyng-7000 Software
Developers Guide (UG821). Zyng-7000 Software Developers Guide (UG821):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14 1/ug821-zyng-7000-swdev.pdf

A.3 Application Software Code

Below is the Application software for the system:

N
*

ook ok % o ok X % ok ok X % b % X

Copyright (c) 2009 Xilinx, Inc. All rights reserved.

Xilinx, Inc.

XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS™ AS A
COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR
STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION
IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE
FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.
XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO
THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO
ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION 1S FREE
FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

*
N

/*

*

helloworld.c: simple test application

*/
#include <stdio.h>
#include "platform._h"
#include "xil_types.h"
#include "xgpio.h"
#include "xtmrctr._h"
#include "xparameters.h"
#include "xgpiops.h"
#include "xil_io.h"

© Copyright 2012 Xilinx

Page 79 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=ug821-zynq-7000-swdev.pdf

e

#include "xil_exception.h"

#include *‘xscugic.h"

static XGpioPs psGpiolnstancePtr;

extern XGpioPs_Config XGpioPs_ConfigTable[XPAR_XGPIOPS_NUM_INSTANCES];
static int iPinNumber = 7; /*Led LD9 is connected to MIO pin 7*/
XScuGic InterruptController; /* Instance of the Interrupt Controller */
static XScuGic_Config *GicConfig;/* The configuration parameters of the

controller */

static int InterruptFlag;
void print(char *str);
extern char inbyte(void);

void Timer_InterruptHandler(void *data, u8 TmrCtrNumber)

{

}

print(*'\r\n");

print("\r\n");

print("00EEECEACEEECAEAE \r\n');
print(" Inside Timer ISR \n \r ");
XTmrCtr_Stop(data, TmrCtrNumber);

// PS GPI10 Writing

print(""LED "LD9" Turned ON \r\n');
XGpioPs_WritePin(&psGpiolnstancePtr, iPinNumber,1);
XTmrCtr_Reset(data, TmrCtrNumber);
print(™ Timer ISR Exit\n \n \r');
print("@EEAAAC

print('\r\n");

print(*\r\n");

InterruptFlag = 1;

\r\n');

int SetUplnterruptSystem(XScuGic *XScuGiclnstancePtr)

{

}

/*

* Connect the interrupt controller interrupt handler to the hardware
* interrupt handling logic in the ARM processor.

*

/

Xil_ExceptionRegisterHandler (XIL_EXCEPTION_ID_INT,
(Xil_ExceptionHandler) XScuGic_InterruptHandler,
XScuGiclnstancePtr);

/*

* Enable interrupts in the ARM
*
/
Xil_ExceptionEnable();
return XST_SUCCESS;

int ScuGiclnterrupt_Init(ulé Deviceld,XTmrCtr *TimerlInstancePtr)

{

int Status;
/*
* Initialize the interrupt controller driver so that it is ready to
* use.
*/
GicConfig = XScuGic_LookupConfig(Deviceld);
if (NULL == GicConfig) {
return XST_FAILURE;
}

Status = XScuGic_Cfglnitialize(&InterruptController, GicConfig,
GicConfig->CpuBaseAddress);
if (Status !'= XST_SUCCESS) {
return XST_FAILURE;
}

/*
* Setup the Interrupt System
*/
Status = SetUplnterruptSystem(&InterruptController);
if (Status I= XST_SUCCESS) {
return XST_FAILURE;
3

/*
* Connect a device driver handler that will be called when an

© Copyright 2012 Xilinx

Page 80 Zyng ZedBoard Concepts, Tools, and Techniques

10/16/2012

e

}

* interrupt for the device occurs, the device driver handler performs
* the specific interrupt processing for the device
*/

Status = XScuGic_Connect(&InterruptController,
XPAR_FABRIC_AXI_TIMER_O_INTERRUPT_INTR,
(Xil_ExceptionHandler)XTmrCtr_InterruptHandler,

(void *)TimerlnstancePtr);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

T

/*
* Enable the interrupt for the device and then cause (simulate) an
* interrupt so the handlers will be called
*
/
XScuGic_Enable(&InterruptController, XPAR_FABRIC_AXI_TIMER_O_INTERRUPT_INTR);
return XST_SUCCESS;

int mainQ)

static XGpio GPlIOInstance_Ptr;

XGpioPs_Config*GpioConfigPtr;

XTmrCtr TimerlInstancePtr;

int xStatus;

u32 Readstatus=0,0ldReadStatus=0;

//u32 EffectiveAdress = OxEOOOAO000;

int IPinNumberEMIO = 54;

u32 uPinDirectionEMIO = 0x0;

// lInput Pin

// Pin direction

u32 uPinDirection = 0Ox1;

int exit_flag,choice, internal_choice;

init_platformQ);

/* data = *(u32 *)(0x42800004);
print("0K \n");
data = *(u32 *)(0x41200004);
print(""OK-1 \n"");

*/

print("##### Application Starts #####\n\r'");
print("\r\n");
//
//Step-1 :AXI1 GPIO Initialization
//
xStatus = XGpio_Initialize(&GPI10Instance_Ptr,XPAR_AXI_GP10_0O_DEVICE_ID);
iF(XST_SUCCESS !I= xStatus)

print("GPI10 INIT FAILED\n\r");
/

//Step-2 :AXI GPIO Set the Direction

//

XGpio_SetDataDirection(&GPI0OInstance Ptr, 1,1);
//

//Step-3 :AXI Timer Initialization

//

xStatus = XTmrCtr_Initialize(&TimerInstancePtr,XPAR_AXI_TIMER_O _DEVICE_ID);
iF(XST_SUCCESS = xStatus)
print("TIMER INIT FAILED \n\r');

//Step-4 :-Set Timer Handler

//

XTmrCtr_SetHandler (&TimerInstancePtr,
Timer_InterruptHandler,
&TimerlInstancePtr);

//

//Step-5 :Setting timer Reset Value

//

XTmrCtr_SetResetValue(&TimerlInstancePtr,
0, //Change with generic value
0xf0000000) ;

//
//Step-6 :Setting timer Option (Interrupt Mode And Auto Reload)
//

© Copyright 2012 Xilinx

Page 81 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

e

XTmrCtr_SetOptions(&TimerInstancePtr,
XPAR_AXI_TIMER_O_DEVICE_ID,
(XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION));
//
//Step-7 :PS GP10 Intialization
//
GpioConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPIO_O_DEVICE_ID);
if(GpioConfigPtr == NULL)
return XST_FAILURE;
xStatus = XGpioPs_Cfglnitialize(&psCGpiolnstancePtr,
GpioConfigPtr,
GpioConfigPtr->BaseAddr);
iF(XST_SUCCESS != xStatus)
print(™ PS GPI10 INIT FAILED \n\r');
/

//Step-8 :PS GPIO pin setting to Output

//

XGpioPs_SetDirectionPin(&psGpiolnstancePtr, iPinNumber,uPinDirection);

XGpioPs_SetOutputEnablePin(&psGpiolnstancePtr, iPinNumber,1);

//

//Step-9 :EMIO PIN Setting to Input port

//

XGpioPs_SetDirectionPin(&psGpiolnstancePtr,
iPinNumberEMIO,uPinDirectionEMIO);

XGpioPs_SetOutputEnablePin(&psGpiolnstancePtr, iPinNumberEMIO,0);

//

//Step-10 : SCUGIC interrupt controller Initialization

//Registration of the Timer ISR

//

xStatus=
ScuGiclInterrupt_Init(XPAR_PS7_SCUGIC_O_DEVICE_ID,&TimerInstancePtr);

iF(XST_SUCCESS !I= xStatus)

print(* :(SCUGIC INIT FAILED \n\r');
/

//Step-11 :User selection procedure to select and execute tests
//
exit_flag = 0;
while(exit_flag = 1)
{

print(” SELECT the Operatlon from the Below Menu \r\n)
print(# #H HitH#E Menu Starts #iHHHH HHHHHHHH#NI\N") ;
print(Press '1' to use NORMAL GPIO as an input (BTNU SW|tch)\r\n s
print(""Press "2 to use EMIO as an input (BTNR switch)\r\n");
print(""Press any other key to Exit\r\n");
print (" HiHHHHHHHHHH AT Menu Ends ##HHHHHEHHHHH NN) ;
choice = inbyte();
printf("'Selection : %c \r\n",choice);
internal_choice = 1;
switch(choice)
{
//
// Use case for AXI GPIO
//
case "1":

exit_flag = O;

print(""Press Switch "BTNU" push button on board \r\n");

print(" \r\n");

while(internal_choice = "0%)

Readstatus = XGpio_DiscreteRead(&GPIOInstance_ Ptr, 1);

if(1== Readstatus && 0 == OldReadStatus)

{
pPrint("$$SISIESSSEEIESISIESESE PSS TSI EISSSSISSSSESISNI\N") ;
print(""BTNU PUSH Button pressed \n\r');
print(""LED "LD9" Turned OFF \r\n');
XGpioPs_WritePin(&psGpiolnstancePtr, iPinNumber,0);
//Start Timer
XTmrCtr_Start(&TimerInstancePtr,0);
print(*"timer start \n\r');

//Wait For interrupt;
print("Wait for the Timer interrupt to tigger \r\n");

© Copyright 2012 Xilinx
Page 82 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

e

print("$$$$SSSEESESI PSS SSESS PSS SSSSSSSSSENI\N"™) ;
print(\r\n");

while(InterruptFlag 1= 1);

InterruptFlag = 0;

pPrint (" #HHHHHHHHHHHHHHHHHHH AN O\ ") ;
print(""Press "0° to go to Main Menu \n\r ");

print("Press any ey to remain i

print(" ##HH HiHHEH
internal_choice = inbyte();
printf(""Select = %c \r\n",internal_choice);
if(internal_choice = "0%)

Test \n\r ");
HEA\r\n ") ;

print(""Press Switch "BTNU" push button on board \r\n'");

OldReadStatus = Readstatus;

3
print(” \r\n");
print(\r\n");
break;

case "2 :
//
//Usecase for PS GPIO
//
exit_flag = 0;
print(""Press Switch "BTNR" push button on board \r\n");
print(\r\n");
while(internal_choice != "0%)

Readstatus = XGpioPs_ReadPin(&psGpiolnstancePtr,

iPinNumberEMIO);

if(1== Readstatus && 0 == OldReadStatus)

{
print("$$SISIESSSEEIESISEESESESIPSS SIS SISSSSESISNI\N") ;
print("BTNR PUSH Button pressed \n\r');
print(""LED "LD9" Turned OFF \r\n');
XGpioPs_WritePin(&psGpiolnstancePtr, iPinNumber,0);

//Start Timer
XTmrCtr_Start(&TimerlInstancePtr,0);
print(""timer start \n\r');
//Wait For interrupt;
print("Wait for the Timer interrupt to tigger \r\n");
pPrint("$$SIEIESSTEEIESIIPSSSEEIESI PSS TS SSISSSSSSISSNr\N™) ;
print(\r\n");
while(InterruptFlag = 1);
InterruptFlag = 0;
print (" HHHHHHHHHHHHHHHHH R A\ ") ;
print(""Press "0" to go to Main Menu \n\r ");
print(""Press any other key to remain in EMIO Test \n\r ");
print (" HHHHHHHHHHHH A A O\ ") 5
internal_choice = inbyte();
printf(""Select = %c \r\n",internal_choice);
if(internal_choice = "0%)
{

print(*"Press Switch "BTNR" push button on board \r\n");

¥
OldReadStatus = Readstatus;
s
print(* \r\n");
print(\r\n");
break;
default :
exit_flag = 1;
break;

}

}

print(C"\r\n");
Print(esxxrxsscsses\r\n'") ;
print("BYE \r\n");

p r i nt(‘ '***********\ r\nn) ;

© Copyright 2012 Xilinx
Page 83 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

& XILINX

cleanup_platform();
return O;

}

© Copyright 2012 Xilinx
Page 84 Zyng ZedBoard Concepts, Tools, and Techniques 10/16/2012

	Chapter 1 Introduction
	1.1 About this Guide
	1.1.1 / Take a Test Drive!
	1.1.2 Additional Documentation
	1.1.3 Training Labs

	1.2 How Zynq AP SoC and Xilinx software Simplify Embedded Processor Design
	1.3 What You Need to Set Up Before Starting
	1.3.1 Software Installation Requirements:
	1.3.2 Hardware Requirements for this Guide

	Chapter 2 Embedded System Design Using the Zynq Processing System
	2.1 Embedded System Construction
	2.1.1 /Take a Test Drive! Creating a New Embedded Project With a Zynq Processing System
	2.1.1.1 Designing a New Embedded System Using the BSB Wizard
	2.1.1.2 Designing a New Embedded System Using a Blank Project

	2.1.2 /Take a Test Drive! Exporting to SDK
	2.1.3 /Take a Test Drive! Running the “Hello World” Application
	2.1.4 Additional Information

	Chapter 3 Embedded System Design Using the Zynq Processing System and Programmable Logic
	3.1 Adding soft IP in the PL to interface with the Zynq PS
	3.1.1 /Take a Test Drive! Check Functionality of IP instantiated in the PL
	3.1.2 /Take a Test Drive! Working with SDK

	Chapter 4 Debugging with SDK and ChipScope Pro
	4.1 /Take a Test Drive! Debugging with Software, Using SDK
	4.2 /Take a Test Drive! Debugging Hardware Using ChipScope Software

	Chapter 5 Booting Linux and Application Debugging Using SDK
	5.1 Requirements
	5.2 Booting Linux on a ZedBoard
	5.2.1 Boot Methods
	5.2.2 Booting Linux from JTAG
	5.2.3 /Take a Test Drive! Booting Linux in JTAG Mode
	5.2.4 Booting Linux from QSPI Flash
	5.2.5 /Take a Test Drive! Booting Linux from QSPI Flash
	5.2.6 Booting Linux from the SD Card
	5.2.7 /Take a Test Drive! Booting Linux from the SD Card

	5.3 Hello World Example
	5.3.1 /Take a Test Drive! Running a “Hello World” Application

	5.4 Controlling LEDs and Switches in Linux Example
	5.4.1 /Take a Test Drive! Controlling LEDs and Switches in a Linux Application

	Appendix A

