AAVNET

Reach Further™

© 2017 Avnet. All rights reserved. All trademarks and registered trademarks are the property of their
respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Avnet is providing this design, code, or information "as is." By providing the
design, code, or information as one possible implementation of this feature, application, or standard,
Avnet makes no representation that this implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Avnet expressly disclaims
any warranty whatsoever with respect to the adequacy of the implementation, including but not limited
to any warranties or representations that this implementation is free from claims of infringement and any
implied warranties of merchantability or fitness for a particular purpose.

Introduction

This document describes a Zynq embedded system design implemented and tested on several Avnet
FMC carriers, for the FMC-HDMI-CAM FMC module, as well as the PYTHON-1300-C camera module.

The Zyng hardware development for this example design was performed with Xilinx Vivado v2016.4
tools. The bare metal application was created with Xilinx SDK v2016.4. Source files for the hardware
and software of this embedded system are provided in the Avnet HDL git repository.

Overview

This reference design is the getting started design for the PYTHON-1300-C camera module. The camera
module features ON Semiconductor’s PYTHON-1300 color image sensor. The PYTHON-1300 is a 1/2 inch
Super-eXtended Graphics Array (SXGA) CMOS image sensor with a pixel array of 1280 by 1024 pixels.
Designed to address the needs of general purpose industrial image sensing applications, the new global
shutter image sensor combines flexibility in configuration and resolution with high speed and high
sensitivity for the industrial imaging market.

Objectives

This tutorial will guide the user how to:
e Retrieve the design files from the public Avnet git repository
e Build the reference design
e Execute the reference design on hardware

Page 2

Reference Design Overview

The example design uses the Zynq processing system (PS) to initialize the PYTHON-1300-C camera, the
HDMI input interface, as well as the HDMI output interface. The design also implements a simple image
sensor pipeline (ISP) and video frame buffer inside the programmable logic (PL).

The following figure illustrates the block diagram for the programmable logic (PL) hardware
implementation.

Video

AXI
To » ova =P
AXI4S
OSD

Video RGB 444

PYTHON AXI4S
=l : To = CFA mp TO To AXI HDMI >
Receiver AXI4S YUV * 422 * VDMA * -> Vi-lt-;:eo -’ Output
VTC

Valid licenses (hardware evaluation, or full license) are required for the following video IP cores:
e Color Filter Array Interpolation (CFA)
e Chroma Resampler
e Video On Screen Display (OSD)
e RGB to YcrCb Color-Space Converter
e Video Timing Controller (VTC)

Page 3

Reference Design Requirements

This tutorial makes use of Xilinx Vivado Design Suite in scripting mode in order to create a project. The
resulting project can be opened with the graphical (GUI) version of the tools for further analysis and
modification.

Software

The software required to build, and execute the reference design is:
e Windws-7 64-bit

e Terminal Emulator (HyperTerminal or TeraTerm)

e Xilinx Vivado Design Suite 2016.4

o one of the following:

o MicroZed Board Definition Install for Vivado 2016.4
= http://www.microzed.org/support/documentation/1519

o PicoZed Board Definition Install for Vivado 2016.4
= http://picozed.org/support/documentation/13076

Hardware

The hardware required to build, and execute the reference design is:
e Win-7 PC with a recommended 2 GB RAM available for the Xilinx tools to complete a XC72020
design?
e One of the following supported FMC carriers:
o MicroZed 7020 SOM + FMC Carrier Card
PicoZed 7030 SOM + FMC Carrier Card V2

o)
o PicoZed 7020 SOM + FMC Carrier Card V2
o ZedBoard

o 2C702

o ZC706

e ON Semiconductor PYTHON-1300-C Canera Module (optionnal)
e DVIor HDMI video source

e HDMI (or DVI-D) monitor (1080P60 capable)

e USB cable (Type A to Micro-USB Type B)

e 4GB MicroSD card

1 Refer to http://www.xilinx.com/design-tools/vivado/memory.htm

Page 4

http://www.microzed.org/support/documentation/1519
http://picozed.org/support/documentation/13076

Experiment 1: Licensing the Video and Image Processing Pack
IP Cores

This reference design uses several of the Xilinx Video and Image Processing Pack IP cores. In order to
build the hardware design, valid licenses (hardware evaluation, or full license) are required for the
following video IP cores:

Color Filter Array Interpolation (CFA)
Chroma Resampler

Video On Screen Display (OSD)

RGB to YcrCb Color-Space Converter
Video Timing Controller (VTC)

Follow these steps to request an evaluation license:

1.

2.

Navigate to the “Video and Image Processing Pack” product page on the Xilinx web site :

Click the Evaluate link located on the right of the web page,
and follow the online instructions

XILINX e awnieiee

MMABLE.

APPLICATIONS PRODUCTS DEVELOPER ZONE SUPPORT ABOUT

Heme 3 Products > Intellectual Property > Video and Image Processing Pack

Video and Image Processing Pack

Qverview Documentation
Product Description v
& XILINX
High quality video and image processing IP cores to enable faster time-to-market ALL PROGRAMMABLE.

Important Notice: There are changes to the VIPP package starting with the 2014.1 Vivado release. The
following cores are being removed from the package: Defective Pixel Correction, Image

Characterization, Image Statistics, Motion Adaptive Noise Reduction and Object Segmentation. Image
Edge Enhancement and Image Noise Reduction are being merged into a new core called Image
Enhancement.
Evaluate
The Xilinx Video and Image Processing Pack provides a low cost bundled licensing option for all of the w
LogiCORE™ IP blocks listed in the key features section. Video processing blocks provide optimized PartTeems SD-
hardware implementations for critical functions such as video scaling, on-screen display, picture-in-picture, IMG-IP-PACK-SITE
text overlay, video and image analysis and more. Image processing blocks enable pre-processing of images License: Core License
captured by a color image sensor fitted with a Bayer Color Filter Array (CFA), correcting defective pixels, Agreement

interpolating missing color components for every pixel, correcting colors to adjust to lighting conditions,
setting gamma to compensate for the intensity distortion of different display devices and more.

3. The generated license file is sent by email. Follow the enclosed instructions to add the

Page 5

evaluation license features for the Video and Image Processing Pack.

http://www.xilinx.com/products/intellectual-property/ef-di-vid-img-ip-pack.html

Experiment 2: Retrieve the design files

In this section, the design files for the reference design will be retrieved from the Avnet git repository.

Navigate to the following web site : https://github.com/Avnet/hdl
Click the branch:master button

Specify the following search criteria : fmchc_python

Click the Tags tab

PwNPE

€ > CH

GitH“b This repository Search Explore

GitHub, Inc. [US |http5:;’;“githuh.cnm;’fﬂ.u-1et_x“-"|d

Avnet / hdl

25 commits 1 branch 14 releases

5 I branch: master Gl| [+

Switch branchesftags

undo
: 3
“ fmchc_python
il B AZ7020 EMBY
Branches

Tags
° for Toshiba TCM3232PB image se
fmchc_python1300c_PZ7030_FMC2_20

Il Scripts undo adding space

jects.

Figure 1 — Avnet GitHub repository — Retrieving specific version with tag

5. Select the fmchc_python1300c_PZ27030_FMC2_20170612_141802 tag
This will retrieve a known working version of the design files for the FMC-HDMI-CAM + PYTHON-
1300-C reference design.

Page 6

https://github.com/Avnet/hdl

6. Click the Download ZIP file button

> Download ZI@

| Download the contents of Avnet/hdl as a zip file

Figure 2 — Avnet GitHub repository — Download ZIP

7. Create an “Avnet” directory in your root C:\ drive

8. Save hdl-fmchc_python1300c_PZ7030_FMC2_20170612_141802.zip file to the C:\Avnet
directory, and extract the contents of the zip file in this directory

9. Rename the “hdl- fmchc_python1300c_PZ7030 FMC2_20170612_141802"” directory to “hdl”
You should see the following directory structure

4 1M Computer
4 £ Local Disk (C:)
4 | Avnet
4 |4 hdl
» . Boards
> 1P

» L. Projects

» 0 Scripts

Figure 3 — Extracted C:\Avnet\hdl directory structure

NOTE : the exact directory name is not critical, but it must remain short on Windows machines, due to
the directory length limitation of Windows

Page 7

The C:\Avnet\hdl repository contains the following sub-directories:

Directory Content Description

C:\Avnet\hdl\Boards

contains board related files

C:\Avnet\hd\IP

contains the IP cores used by the ref designs

C:\Avnet\hdI\Projects

contains project related files

C:\Avnet\hdI\Scripts

contains scripts used to automatically build the designs

For the PYTHON-1300-C reference design, the following content is of interest:

Directory

Content Description

C:\Avnet\hdI\IP\avnet_hdmi_in
C:\Avnet\hdI\IP\avnet_hdmi_out

IP cores (including HDL source)
for the HDMI input/output interfaces including
embedded sync code insertion/detection

C:\Avnet\hd\IP\onsemi_vita_spi

IP core (including HDL source)
for the SPI controller for use with the
VITA/PYTHON image sensors

C:\Avnet\hd\IP\onsemi_vita_cam

IP core (including HDL source)
for the VITA/PYTHON camera receiver

make_fmchc_python1300c.tcl

C:\Avnet\hdI\Projects\ files for FMC-HDMI-CAM + PYTHON-1300-C
fmchc_python1300c reference design
C:\Avnet\hd\Scripts\ script to build FMC-HDMI-CAM + PYTHON-1300-

C reference design

Page 8

By default, the script will build the design for the PicoZed 7030 + FMC Carrier V2. Modify the script
accordingly to build for your FMC carrier.

10. Edit the make_fmchc_python1300c.tcl script to only build for your FMC carrier.

Build FMC-HDMI-CAM + PYTHON-1300-C Getting Started design

for the MicroZed-7020 + FMC Carrier Card

#set argv [list board=Mz7020 FMCCC project=fmchc pythonl300c sdk=yes
version override=yes]

#set argc [llength S$argv]

#source ./make.tcl -notrace

Build FMC-HDMI-CAM + PYTHON-1300-C Getting Started design

for the PicoZed-7030 + FMC Carrier Card V2

set argv [list board=PZ27030 FMCZ2 project=fmchc pythonl300c sdk=yes
version override=yes]

set argc [llength $argv]

source ./make.tcl -notrace

Build FMC-HDMI-CAM + PYTHON-1300-C Getting Started design

for the PicoZed-7020 + FMC Carrier Card V2

#set argv [list board=PZ7020 FMC2 project=fmchc pythonl300c sdk=yes
version override=yes]

#set argc [llength S$argv]

#source ./make.tcl -notrace

Build FMC-HDMI-CAM + PYTHON-1300-C Getting Started design

for the ZedBoard

#set argv [list board=ZEDBOARD project=fmchc pythonl300c sdk=yes
version override=yes]

#set argc [llength $argv]

#source ./make.tcl -notrace

Build FMC-HDMI-CAM + PYTHON-1300-C Getting Started design

for the 2ZC702 board

#set argv [list board=72C702 project=fmchc pythonl300c sdk=yes
version override=yes]

#set argc [llength S$argv]

#source ./make.tcl -notrace

Page 9

Experiment 3: Build the Reference Design

In this section, the Vivado project will be created and built with TCL scripts, implementing the FMC-HDMI-
CAM + PYTHON-1300-C reference design for the selected FMC carrier.

1. From the Start menu, open the “Vivado 2016.4 TCL Shell” console

2. Change to the C:\Avnet\hdI\Scripts directory

x*x*xx Vivado v2016.4 (64-bit)
**xx*x SW Build 1756540 on Mon Jan 23 19:11:23 MST 2017
**x*x TP Build 1755317 on Mon Jan 23 20:30:07 MST 2017
** Copyright 1986-2016 Xilinx, Inc. All Rights Reserved.

Vivado% ed C:/Avnet/hdl/Scripts
Vivado%

3. Launch the build with the “source ./make_fmchc_python1300c.tcl” command

Vivado% source ./make_fmchc_pythonl300c. tcl

set argv [list board=PZ7030 FMC2 project=fmchc pythonl300c sdk=yes
version override=yes]

set argc [llength S$argv]

source ./make.tcl -notrace

R U U U (S U RS QU (G QN SR R QUL U QNS (D QU QS R QU RS (N N NS S U (g
R U U (S (NS U S U G S (G U S (GRS G S (G U SN (S U S (U (R S S
* — —%
* - Welcome to the Avnet Project Builder —-*
* — —%
R G NS S (S U N RS (R QN SR (R QNS R S (N QN SN (S (U QU U QU (g *—k -k
R G S (U (SR U (S U G U S SN U (S NN SN (R N S S (G SN (G (S S * —k %
o o - +
| Setting | Configuration
o o - +
| Board | PZ7030 FMC2 |
o oo ey +
| Project | fmchc pythonl300c
o oo ey +
| SDK | yes |
o o - +
| Version override | yes

o - R i +

Page 10

As a convenience, before building the hardware design, the scripts will verify if valid licenses are
installed for the video IP cores used in the design.

*x*x* Check for Video IP core licenses...

e et T e o +
| Video IP Core | License Status

fom e o +
| v cfa | VALID (Hardware Evaluation)

e et T e o +
| v cresample | VALID (Hardware Evaluation)
o gy +
| v osd | VALID (Hardware Evaluation)

e et T e o +
| v _rgb2ycrcb | VALID (Full License)
o e +
| v_tc | VALID (Full License)

Fomm e o +

Each of the video IP cores requires a full license or hardware evaluation license in order to successfully
build a bitstream.

The build will perform the following steps, where {BOARD} will be one of MZ7020_FMCCC,
PZ7030_FMC2, ZEDBOARD, ZC702, or ZC706:

e Create and build the hardware design with Vivado 2016.4,
including the IP Integrator block design

C:\Avnet\hdI\Projects\fmchc_python1300c\{BOARD\fmchc_ python1300c.xpr

e Create and build the SDK workspace, including board support package (BSP),
software application, and first stage boot loader (FSBL)

C:\Avnet\hdI\Projects\fmchc_python1300c\{BOARD \fmchc_ python1300c.sdk
e Create the SD card image (BOOT.bin)

C:\Avnet\hdI\Projects\fmchc_python1300c\{BOARD\BOOT.bin

Page 11

Experiment 4: Execute the reference design on hardware

This section describes how to execute the reference design on the hardware.
For instructions on how to setup the hardware, please refer to the FMC carrier’s User Guide.
Note that for the ZC702 dual FMC carrier, the default design is built for the FMC2 slot.

Note that for the ZC706 dual FMC carrier, the default design is built for the LPC slot.

Booting from SD card image

The BOOT.bin SD card image created in the previous experiment can be used to execute the reference
design on hardware with the FMC Carrier.

For more detailed instructions on how to boot from the SD card, please refer to the FMC Carrier’s User
Guide.

Booting from JTAG with SDK

The hardware and software can also be loaded to hardware using SDK 2016.4 and a JTAG emulator.
Set up the hardware as described in the FMC Carrier’s User Guide, with the following exceptions:
1. Setthe FMC Carrier’s boot mode to cascaded JTAG
2. Connect the JTAG Programming Cable (Platform Cable, Digilent HS1 or HS2 cable) to the PC
using a USB cable and then plug the 14-Pin PC4 header or cable into the FMC Carrier Card’s PC4
connector.

3. Launch SDK 2016.4, and specify the following directory for the SDK workspace:

C:\Avnet\hdI\Projects\fmchc_python1300c\{BOARD}\
fmchc_ python1300c.sdk

Page 12

Workspace Launcher ﬁ

Select a workspace

Xilinx 5DK stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspi \fmchc_python1300c\{BOARD}\fmchc_python1300c.sdk -

[Use this as the default and do not ask again

0K] ’ Cancel

Figure 4 — SDK - Specifying SDK workspace

4. Close the Welcome Window
5. Inthe SDK menu, select Xilinx Tools => Repositories
6. Verify that the following Local Repository is specified:

C:\Avnet\hdI\Projects\fmchc_python1300c\software\sw_repository

(W rreterences R W . W T e o
type filter text Add, remove or change the order of SDK's software repositories. - T -
z i::eral Local Repositories (available to the current workspace)
> GG+ C:\Avnet\hdI\Projects\fmchc_python1300c\software\sw_repository
> Help
> Install/Update Remove
> Java Up
> Remote Systems
> Run/Debug Down
> Team
Terminal
4 Kilin SDK Global Repositories (available across workspaces)
Boot Image
BSP Preferences
Flash Programming
Hardware Specification Remove
Log Infermation Level Up
Repositories
XMD Startup Down

Figure 5 — SDK - Specifying local repository

Page 13

7. If the local repository is not specified, click on the New button,
navigate to the following directory, then click OK.

C:\Avnet\hdI\Projects\fmchc_python1300c\software\sw_repository
8. When done, click OK.

Now that the SDK workspace is correctly configured, the hardware and software can be loaded and
executed on the hardware.

9. Inthe SDK menu, select Xilinx Tools => Load FPGA

rm Program FPGA ﬁ1

Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory

Hardware Configuration

Hardware Platform: ~ fmchc_python1300c_hw -

Connection: Local v| | Mew |

Device: Auto Detect Select

Bitstream: fmchc_python1300c_wrapper.bit Search... | | Browsze
BMM/MMI File: Search Browse

Software Configuration
Processor ELF File te Initialize in Block RAM

'/?\] [Program l | Cancel |

Figure 6 — SDK — Program FPGA

10. Click the Program button.

It will take approximately 10 seconds to program the bitstream to hardware
11. Right-click fmchc_python1300c_app

and select Run as => Run Configurations.

12. Click Xilinx C/C++ Application (GDB) and click New launch configurations.
13. The new run configuration is created named fmchc_python1300c_app Debug

The configurations associated with application are pre-populated in the main tab of these
launch configurations

Page 14

14. Click on the Application tab

15. Next to the Application: edit box, click the Search button.

16. Select the fmchc_python1300c_app.elf application, then click OK.
17. Click Apply and then Run.

18. If you get a Reset Status dialog box indicating that the current launch will reset the entire
system, click OK.

19. You should see text on the serial console, as shown in the next section.
If you have a PYTHON-1300-C camera module, you will observe the content captured by the PYTHON-
1300-C image sensor on the DVI/HDMI monitor. If you do not have a PYTHON-1300-C camera module,

proceed to the next section for instruction on enabling the HDMI input data path.

You have successfully executed the FMC-HDMI-CAM + PYTHON-1300-C reference design on hardware !

Page 15

Using the text based serial console

1. Once the design is running on hardware, you should see something similar to the following on
your serial console:

-= FMC-HDMI-CAM + PYTHON-1300-C -=
-= Getting Started Design -—

FMC-HDMI-CAM Initialization

Video Clock Synthesizer Configuration
HDMI Output Initialization

PYTHON Receiver Initialization

PYTHON Sensor Initialization

CFA Initialization

VDMA 0O Initialization

VDMA 1 Initialization

OSD Initialization (hdmi=0x00, cam=0xFF)

-— FMC-HDMI-CAM + PYTHON-1300-C —-=
-= Getting Started Design -=
General Commands:
help Print the Top-Level menu Help Screen
verbose on Enable verbose
verbose off Disable verbose
Getting Started Commands
start start and select video source (hdmi|cam)

FMCHC PYTHON1300C>

Figure 7 — FMC-HDMI-CAM Getting Started Design — Serial Console Output

If you have a PYTHON-1300-C camera module, you will observe the content captured by the PYTHON-
1300-C image sensor on the DVI/HDMI monitor. If you do not have a camera module, you will see
green content, the default value of pixels in the camera frame buffer.

Page 16

Getting Help for commands

At any time, you can type the “help” command to display the list of commands supported by the
demonstration.

FMCHC PYTHON1300C>help

-= FMC-HDMI-CAM + PYTHON-1300-C -=
-- Getting Started Design -

General Commands:
help Print the Top-Level menu Help Screen
verbose on Enable verbose
verbose off Disable verbose
Getting Started Commands
start start and select video source (hdmi|cam)

FMCHC PYTHON1300C>

For more detailed information on a particular command, type the command followed by the “help”
argument as follows:

FMCHC PYTHON1300C>start help
Syntax
start cam => Start CAM video source
start hdmi => Start HDMI video source

FMCHC PYTHON1300C>

Page 17

Starting the HDMI video pipeline

To enable the HDMI pipeline (HDMI input => HDMI output), press the “start hdmi” command. This will
initialize the HDMI input interface, the corresponding Video DMA core, as well as configure the OSD core
to display the HDMI video path.

If the re

solution of the video source is 1080P, the content will fill the entire 1080P resolution output.

FMCHC_PYTHONl3OOC>start hdmi

HDMI Input Initialization

Waiting for ADV7611 to locked on incoming video
ADV7611 Video Input LOCKED
Input resolution = 1920 X 1080

VDMA 0 Initialization

VDMA 1 Initialization

OSD Initialization (hdmi=0xFF, cam=0x00)

FMCHC PYTHON1300C>

If the resolution of the video source is less than 1080P, the video source will be displayed in the top-left

portion

of a 1080P resolution output.

FMCHC PYTHON1300C>start hdmi

HDMI Input Initialization

Waiting for ADV7611 to locked on incoming video
ADV7611 Video Input LOCKED
Input resolution = 1280 X 720

VDMA 0 Initialization

VDMA 1 Initialization

OSD Initialization (hdmi=0xFF, cam=0x00)

FMCHC PYTHON1300C>

Page 18

Starting the Camera video pipeline

To enable the camera pipeline (HDMI input => HDMI output), press the “start cam” command. This will
initialize the PYTHON camera, the corresponding Video DMA core, as well as configure the OSD core to
display the PYTHON video path.

FMCHC PYTHON1300C>start cam

PYTHON Receiver Initialization

PYTHON Sensor Initialization

CFA Initialization

VDMA 0O Initialization

VDMA 1 Initialization

OSD Initialization (hdmi=0x00, cam=0xFF)

FMCHC PYTHON1300C>

Enabling Verbose

Additional verbose can be enabled with the “verbose on” command. This is useful for diagnostic purposes,
when needed.

FMCHC PYTHON1300C>verbose on
verbose = on

FMCHC PYTHON1300C>

The expected output, in verbose mode, for the camera input is shown below:

FMCHC PYTHON1300C>verbose on
verbose = on

FMCHC PYTHON1300C>start cam
start cam
Video Frame Buffer Initialization
PYTHON Receiver Initialization
PYTHON Sensor Initialization
VITA SYNCGEN - Setting Video Timing
HSYNC Timing = hav=1280, hfp,=48, hsw=184 (hsp=1), hbp=074 (x4)
VSYNC Timing = hav=1024, hfp,=01, hsw=03 (hsp=1), hbp=026 (x4)
VITA ISERDES - Setting Training Sequence to 0x000003A6
VITA ISERDES - Setting Manual Tap to 0x00000019
VITA DECODER - Configuring Sync Codes
VITA REMAPPER - Configuring for image lines in normal mode
VITA REMAPPER - Control = 0x00000001
VITA SPI Sequence 0 - Assert RESET N pin
VITA SPI Sequence 0 - Releasing RESET N pin

Page 19

VITA SPI Sequence 1

VITA SPI[0x0000]
VITA SPI[0x0001]

=> 0x50D0
=> 0x0000

PYTHON-1300 Sensor detected

- Enable Clock Management - Part 1

VITA SPI[0x0002] <= 0x0001
VITA SPI[0x0020] <= 0x3004
VITA SPI[0x0014] <= 0x0000
VITA SPI[0x0011] <= 0x2113
VITA SPI[0x001A] <= 0x2280
VITA SPI[0x001B] <= 0x3D2D
VITA SPI[0x0008] <= 0x0000
VITA SPI[0x0010] <= 0x0003
VITA SPI Sequence 2 - Verify PLL Lock Indicator
VITA SPI[0x0018] => 0x0001
VITA SPI Sequence 3 - Enable Clock Management - Part 2
VITA SPI[0x0009] <= 0x0000
VITA SPI[0x0020] <= 0x3006
VITA SPI[0x0022] <= 0x0001
VITA SPI Sequence 4 - Required Register Upload
VITA SPI[0x00C5] <= 0x0205
VITA SPI[0x00E0] <= 0x3ESE
VITA SPI[0x00CF] <= 0x0000
VITA SPI[0x0081] <= 0x8001
VITA SPI[0x0080] <= 0x4714
VITA SPI[0x00CC] <= 0x01E3
VITA SPI[0x0029] <= 0x085A
VITA SPI[0x002A] <= 0x0011
VITA SPI[0x0041] <= 0x288B
VITA SPI[0x00D3] <= 0x0E49
VITA SPI[0x002B] <= 0x0008
VITA SPI[0x0046] <= 0x1111
VITA SPI[0x0043] <= 0x0554
VITA SPI[0x0042] <= 0x53C6
VITA SPI[0x0044] <= 0x0085
VITA SPI[0x00D7] <= 0x0107
VITA SPI[0x00C2] <= 0x0221
VITA SPI[0x00C7] <= 0x001B
VITA SPI[0x00C9] <= 0x2710
VITA SPI[0x00C8] <= 0x411A
VITA SPI[0x00C0] <= 0x0800
VITA SPI Sequence 5 - Soft Power-Up
VITA SPI[0x0020] <= 0x3007
VITA SPI[0x000A] <= 0x0000
VITA SPI[0x0040] <= 0x0001
VITA SPI[0x0048] <= 0x2227
VITA SPI[0x002A] <= 0x0013
VITA SPI[0x0028] <= 0x0003
VITA SPI[0x0030] <= 0x0001
VITA SPI[0x0070] <= 0x0007
VITA SPI[0x0080] <= 0x4714
VITA ISERDES - Asserting Reset
VITA DECODER - Asserting Reset
VITA CRC - Asserting Reset
VITA ISERDES - Releasing Reset
VITA DECODER - Releasing Reset
VITA CRC - Releasing Reset
VITA ISERDES - Status = 0x61610100

Page 20

VITA ISERDES - Status = 0x61610100
VITA ISERDES - Waiting for CLK RDY to assert
VITA ISERDES - Status = 0x61610100
VITA ISERDES - Align Start
VITA ISERDES - Waiting for ALIGN BUSY to assert
VITA ISERDES - Status = 0x61610304
VITA ISERDES - Waiting for ALIGN BUSY to de-assert
VITA ISERDES - Status = 0x61610100
VITA ISERDES - Status = 0x61610100
VITA ISERDES - Enabling FIFO enable
VITA DECODER - Enabling Sync Channel Decoder
VITA DECODER - Control = 0x00000002
VITA CRC - Status = 0x0000000F
VITA CRC - Status = 0x0000000F
VITA CRC - Status = 0x0000000F
VITA CRC - Status = 0x0000000F
VITA CRC - Status = 0x0000000F
VITA CRC - Status = 0x0000000F
VITA CRC - Status = 0x0000000F
VITA CRC - Status = 0x0000000F
VITA CRC - Status = 0x0000000F
VITA CRC - Status = 0x0000000F
VITA SPI Sequence 6 - Enable Sequencer

VITA SPI[0x00C0] => 0x0800

0x0001

VITA SPI[0x00CO0] <= 0x0801
VITA SPI Sequence CDS

VITA SPI[0x00CO0] <= 0x0800

VITA SPI[0x00CC] <= 0x01E3

VITA SPI[0x0041] <= 0x288B

VITA SPI[0x0029] <= 0x085F

VITA SPI 0x002A] <= 0x4113

VITA SPI[0x002B] <= 0x0008
VITA SPI[0x0048] <= 0x0017
VITA SPI[0x0180] <= 0xC800
VITA SPI[0x0181] <= OxFBIF
VITA SPI[0x0182] <= OxFBIF
VITA SPI[0x0183] <= O0xFB12
VITA SPI[0x0184] <= 0xF903

]
]
]
]
]
]
]
VITA SPI[0x0185] <= 0xF802
]
]
]
]
]
]
]

VITA_SPI 0x0186 <= 0xF30F
VITA_SPI 0x0187 <= 0xF30F

<= 0xF30F
VITA SPI[0x0189] <= O0xF30A
VITA SPI[0x018A] <= O0xF101
VITA_SPI 0x018B] <= O0xFOO0OA
VITA_SPI 0x018C] <= 0xF24B

VITA SPI 0x018D] <= 0xF226
VITA SPI[0x018E] <= 0xF001
VITA SPI[0x018F] <= 0xF402
VITA SPI 0x0190] <= 0xF001
VITA SPI 0x0191] <= 0xF402
VITA SPI[0x0192] <= 0xF001
VITA SPI[0x0193] <= 0xF401
VITA SPI[0x0194] <= 0xF007
VITA SPI 0x0195] <= 0xF20F

[
[
[
[
[
[
[
[
[
[
[
[
[
[
VITA SPI[0x0188
[
[
[
[
[
[
[
[
[
[
[
[
[
VITA SPI[0x0196] <= O0xF20F

Page 21

VITA SPI[0x0197]
VITA SPI[0x0198]
VITA SPI[0x0199]
VITA SPI[0x019A]
VITA SPI[0x019B]
VITA SPI[0x019C]
VITA SPI[0x019D]
VITA SPI[0x019E]
VITA SPI[0x019F]
VITA SPI[0x00D8]
VITA SPI[0x01A0]
VITA SPI[0x01A1]
VITA SPI[0x01A2]
VITA SPI[0x01A3]
VITA SPI[0x01A4]
VITA SPI[0x01A5]
VITA SPI[0x01A6]
VITA SPI[0x01A7]
VITA SPI[0x00DB]
VITA SPI[0x01A8]
VITA SPI[0x01A9]
VITA SPI[0x01AA]
VITA SPI[0x01AB]
VITA SPI[0x01AC]
VITA SPI[0x01AD]
VITA SPI[0x01AE]
VITA SPI[0x01AF]
VITA SPI[0x01B0]
VITA SPI[0x01B1]
VITA SPI[0x01B2]
VITA SPI[0x01B3]
VITA SPI[0x01B4]
VITA SPI[0x01B5]
VITA SPI[0x01B6]
VITA SPI[0x01B7]
VITA SPI[0x01B8]
VITA SPI[0x01B9]
VITA SPI[0x01BA]
VITA SPI[0x01BB]
VITA SPI[0x01BC]
VITA SPI[0x01BD]
VITA SPI[0x01BE]
VITA SPI[0x01BF]
VITA SPI[0x01CO0]
VITA SPI[0x01C1]
VITA SPI[0x01C2]
VITA SPI[0x01C3]
VITA SPI[0x01C4]
VITA SPI[0x01C5]
VITA SPI[0x01C6]
VITA SPI[0x01C7]
VITA SPI[0x01C8]
VITA SPI[0x01C9]
VITA SPI[0x00DC]
VITA SPI[0x01CA]
VITA SPI[0x01CB]
VITA SPI[0x01CC]

= 0xF202

0xF006
0xEC02
0xE801
0xECO02
0xE801
0xEC02
0xC801
0xC800
0x7F00
0xC800
0xCC02
0xC801
0xCCO02
0xC801
0xCC02
0xC806
0xC800
0x0020
0x0030
0x2076
0x2071
0x0071
0x107F
0x1072
0x1074
0x0076
0x0031
0x21BB
0x20B1
0x00B1
0x10BF
0x10B2
0x10BR4
0x00B1
0x0030
0x0030
0x217B
0x2071
0x2071
0x0071
0x107F
0x1072
0x1074
0x0076
0x0031
0x20B6
0x00B1
0x10BF
0x10B2
0x10B4
0x00B1
0x0030
0x3928
0x0030
0x20F3

= 0x2071

Page 22

VITA SPI[0x01CD]
VITA SPI[0x01CE]
VITA SPI[0x01CF]
VITA SPI[0x01DO0]
VITA SPI[0x01D1]
VITA SPI[0x01D2]
VITA SPI[0x01D3]
VITA SPI[0x01D4]
VITA SPI[0x01D5]
VITA SPI[0x01D6]
VITA SPI[0x01D7]
VITA SPI[0x01D8]
VITA SPI[0x01D9]
VITA SPI[0x01DA]
VITA SPI[0x00DD]
VITA SPI[0x00DE]
VITA SPI[0x00CO]

VITA SPI[0x00CO0]
CFA Initialization
VDMA 0O Initialization
VDMA 1 Initialization

<= 0x0071
<= 0x0179
<= 0x0078
<= 0x1074
<= 0x0076
<= 0x0031
<= 0x21BD
<= 0x20B1
<= 0x00B1
<= 0x10BF
<= 0x10B2
<= 0x10B4
<= 0x00B1
<= 0x0030
<= 0x624A
<= 0x624A
=> 0x0801

0x0001
<= 0x0801

OSD Initialization (hdmi=0x00, cam=0xFF)

FMCHC PYTHON1300C>

Page 23

Appendix I: Getting Support

Avnet Support

e Technical support is offered online through the picozed.org website
support forums. Avnet dev kit users are encouraged to participate in the
forums and offer help to others when possible. @
http://picozed.org/forums/zed-english-forum
http://picozed.org/forums/software-application-development

Support Forums

e For questions regarding the community website, please direct questions
to the picozed.org Web Master (webmaster@picozed.org).

e To access the most current collateral for the Avnet dev kits, visit the community support page
(www.picozed.org/content/support) and click one of the icons shown below:

Documentation Reference Designs
Tutorials

Page 24

http://www.ultrazed.org/
http://picozed.org/forums/zed-english-forum
http://picozed.org/forums/software-application-development
mailto:webmaster@picozed.org
http://www.picozed.org/content/support

Xilinx Support

For questions regarding products within the Product Entitlement Account, send an email message
to the Customer Service Representative in your region:

e (Canada, USA and South America - isscs_cases@xilinx.com
e Europe, Middle East, and Africa - eucases@xilinx.com

e Asia Pacific including Japan - apaccase@xilinx.com

For technical support, including the installation and use of the product license file, contact Xilinx Online
Technical Support at www.xilinx.com/support. The following assistance resources are also available on
the website:

Software, IP and documentation updates

Access to technical support Web tools

Searchable answer database with over 4,000 solutions
User forums

Page 25

http://www.xilinx.com/support

Revision History

Date

Version

Revision

13 June 2017

1.0

Initial Release

Page 26

